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Materials and instruments

All anions were used as the sodium salts while all cations were used as the perchlorate
salts, which were purchased from Alfa Aesar and used as received. Fresh double distilled
water was used throughout the experiment. Nuclear magnetic resonance (NMR) spectra were
recorded on Varian Mercury 400 and Varian Inova 600 instruments. Mass spectra were
recorded on a Bruker Esquire 6000 MS instrument. The X-ray diffraction analysis (XRD) was
performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with
graphite monochromated CuKa radiation (A = 1.54073 A). The morphologies and sizes of the
xerogels were characterized using field emission scanning electron microscopy (FE-SEM,
JSM-6701F) at an accelerating voltage of 8 kV. The infrared spectra were performed on a
Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were
measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra were
recorded on a Shimadzu RF-5301PC spectrofluorophotometer.
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Scheme S1. The synthesis of G

Synthesis of gelator G

1. Synthesis of 2,3,4-tris-hexadecyloxy-benzaldehyde (M): 2,3,4-trihydroxy- benzaldehyde
(5 mmol, 0.77g), 1-bromo-hexadecane (16 mmol, 4.88 g), K,CO; (30 mmol, 4.14 g) and KI
(2 mmol, 0.332 g) were added to 40 ml acetone. The reaction mixture was stirred under
refluxing in nitrogen conditions for 36 hours. After removing the solvent, the precipitate was
dissolved in CHCl; and then being washed by H,O and saturated sodium chloride aqueous
solution successively. The product 2,3,4-tris-hexadecyloxy-benzaldehyde (M) was obtained
after evaporating the solvent. (yield: 90%). 'H NMR (CDCl;, 400 MHz): 8, 10.26 (s, 1H, -
CH=0), 7.57 (d, 1H, J = 8.0 Hz, -ArH), 6.71 (d, 1H, J = 8.0 Hz, -ArH), 3.97-4.17 (m, 6H, -
OCH,), 1.74-1.87 (m, 6H, -CH,), 1.26-1.31 (m, 78H, -CH,), 0.88 (t, J = 8.0 Hz, 9H, -CHj;).
MS-ESI caled for CssH9304 [G + H]™: 827.7800; found: 827.6445.

2. Synthesis of gelator G: 2,3,4-tris-hexadecyloxy-benzaldehyde (M) (1 mmol), 3-hydroxy-
naphthohydrazide (1 mmol) and glacial acetic acid (0.05 mmol, as a catalyst) were added to
ethanol (15 mL). Then the reaction mixture was stirred under refluxed conditions for 24 hours,
after removing the solvent, yielding the precipitate of G (yield, 79%). 'H NMR (CDCls, 400
MHz): 6, 11.22 (s, 1H,-OH) 98, 9.51 (s, 1H,-NH), 8. 51 (s, 1H, -N=CH), 8.10 (s, 1H, -ArH),
7.80-7.79 (d, 1H, J =4.0 Hz, -ArH), 7.71-7.70 (d, J = 4.0 Hz, 1H, -ArH), 7.58-7.56 (d, J] = 8.0
Hz, 1H, -ArH), 7.50-7.49 (d, ] = 4.0 Hz, 1H, -ArH), 7.34-7.36 (t, J = 8.0 Hz, 1H, -ArH), 6.63-
6.72 (m, 2H, -ArH), 4.18-3.97 (m, 6H, -OCH,), 1.85-1.75 (m, 6 H, -OCH,CH,), 1.35-1.26 (m,
78H, -CH,), 0.89-0.87 (t, J = 8.0 Hz, 9H, -CHj3). 13C-NMR (CDCls, 100 MHz) 6/ppm 153.0,
139.2, 128.6, 128.1, 126.9, 126.2, 124.4, 122.3, 108.51, 74.8, 73.7, 68.8, 31.9, 30.3, 29.7, 29.7,
29.7,29.6, 29.5,29.4,29.4, 26.2, 26.1, 26.10, 26.1, 22.7, 14.1. IR (KBr, cm-1) v: 3202 (broad
peak, O-H, N-H), 1649 (C=0), 1590 (C=N); MS-ESI calcd for CeH;1;N,Os [G + H]™:
1011.8488; found: 1011.6870.
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Figure S1. '"H NMR Spectrum of G
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Figure S2. 3C NMR Spectrum of G
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Figure S3. Mass Spectrum of G



Table S1. Gelation Property of Organogelator G.

Entry  Solvent State? CGC®%)  Tgels (C, wt%)
1 water P \ \

2 acetone G 1.5 \

3 methanol P \ \

4 ethanol G 2 54(2.5 %)
5 isopropanol G 1 50(1.5 %)
6 isopentanol G 0.8 49(1%)

7 acetonitrile P \ \

8 THF S \ \

9 DMF G 1.5 49(2 %)
10 DMSO G 4 48(4.5 %)
11 CCly G 1 52(1.5 %)
12 n-hexane G 1 S51(1.5 %)
13 ethanediol P \ \

14 benzene S \ \

15 CH,Cl, S \ \

16 CHCl, S \ \

17 CH,CICH,Cl S \ \

18 petroleum ether G 3 52(3.5%)
19 ethyl acetate G 1 48(1.5%)
20 n-propanol G 2 55(2.5%)
21 n-butyl alcohol G 0.2 47(0.6%)
22 n-amyl alcohol G 0.2 48(0.6%)
23 cyclohexanol G 2 50(2.5%)
24 n-hexanol G 1 49(1.5%)

3G, P and S denote gelation, precipitation and solution, respectively, ¢ = 0.8%.
bThe critical gelation concentration (wt%, 10mg/ml = 1.0%).

°The gelation temperature(C).
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Figure S4. FT-IR spectra of (a) powder G and xerogel of organogel OG; (c)
xerogel of OG, OG+Fe’* and OG+Fe**+HSOy; (b) xerogel of OG, and xerogel OG +CN-.
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Figure SS. Powder XRD patterns of powder and xerogel of OG.

Figure S6. SEM images of (a) OG xerogel; (b) FeG xerogel; (c) FeG xerogel treated with
HSOy in situ.
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Figure S7 Fluorescence spectra of organogel of OG (in gelated state) in n-butyl alcohol

(0.8% w/v).
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Figure S8. Photographs of organogel of OG in n-butyl alcohol (0.8% w/v) and organogels of
OG in the presence of various metal ions (Mg?*, Ca?’, Cr3*, Fe**, Co?*, Ni**, Cu?*, Zn?>", Ag",
Cd?*, Hg?", Pb?*, Ba?*, Sr?*, AI*", La’*, Y3', Ru’", Eu*" and Tb3", G: metal ions =2 : 1) under
(a) nature light (b) UV light.
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Figure S9. Fluorescence spectra of organogel of OG and OG (in gelated state) in the
presence of various metal ions (Mg?*, Ca?', Cr3*, Fe**, Co?*, Ni**, Cu?*, Zn>*, Ag*, Cd**, Hg?",
Pb?*, Ba?', Sr?*, AI¥*, La’*, Y3*, Ru**, Eu’" and Tb3', G: metal ions =2 : 1) . (A¢x = 300 nm).
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Figure S10. Fluorescence spectra of supramoleculargel based sensor (in gelated state)
(a)CuG, (b)CrG, (c)BaG and (d)AIG in the presence of various anions (F-, CI-, Br, I, AcOr,
H,POy4, N3, SCN-, ClO,4, S CN- H* and OH"); (e) LaG, (f) EuG and (g) TbG treated with
OH-; (h) AlIFeG and (i) AICuG treated with CN-; (j) AICrG treated with S*; (k) AlHgG
treated with Cl; (1) BaMgG treated with I; (m) BaCaG treated with HSO,4; (n) OG+CN-
treated with Fe3"; (0) OG in the presence of various anions. (Acx = 300 nm).
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Figure S11. Fluorescence spectra of supromaleculargel based sensors (in gelated state) with
increasing concentration of guest ions: (a) FeG with HSO4 (b) CuG with SCN-; (¢) CrG with
S?-; (d) BaG with F-; (e) AIG with HSOy4; (f) AIFeG with CN-; (g) AlIHgG with CI-; (h)
AICrG with S*; (i) AICuG with CN-; (j) BaMgG with I-; (k) BaCaG with HSOy; (1) YG
with Pb?"; (m) RuG with AI**; (n) LaG with Hg?*; (o) EuG with Zn**; (p) OG+CN- with
Fe’*; (q) OG CN-. (Ax = 300 nm).
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Figure S12 '"H NMR spectra of (a) G (20 mg /ml!), (b) after addition of 0.5 equiv. of CN- in

CDCl; (0.4ml ) and de-DMSO (0.1ml); (¢) 1 equiv. of CN-; (d) 2 equiv. of CN-L.



Table S2. Detection limits of the supramolecular based sensor array for target ions.

sensor ions detection

limits/M-!
oG CN- 10
FeG HSO4 106
CuG SCN- 106
CrG S2- 10
BaG F- 103
AlG HSO4 106
AlFeG CN- 1073
AlHgG Cl 103
AlCuG CN- 107
AICrG S2- 106
BaMgG I 10-¢
BaGaG HSO4 106
OG+CN- Fe* 10
LaG Hg** 106
YG Pb2* 10°
RuG A 10

EuG Zn** 107




