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Table S1. Crystallographic parameters of cubic NaYF4 and tetragonal LiYF4 crysals.
Phase Atom Site x/a y/b z/c

Li 4a 0 1/4 1/8
Tetragonal-LiYF4 (I41/a)1 Y 4b 1/2 3/4 1/8

F 16f 0.2815(1) 0.0854(1) 0.0437(1)
Na 4a 0 0 0

Cubic-NaYF4 (Fm-3m)2 Y 4a 0 0 0
F 8c 1/4 1/4 1/4

Figure S1. Schematic representation of cubic-phase NaYF4 (left) and tetragonal-phase 
LiYF4 (right) structure.



Figure S2 (a) XPS spectrum of Mn2+-doped LiYF4:Yb/Er (20/2 mol%) prepared with 
10 mol% feeding concentration; (b) High-resolution XPS spectrum of Mn 2p. The Mn 
2p1/2 and 2p3/2 signals are located at 654.15 and 642.4 eV, respectively.

Table S2. Elemental analyses of Mn2+ in Mn2+ doped LiYF4:Yb/Er nanoparticles by 
ICP-AES measurement.

Nominal concentration (mol%) ICP-AES result (mol%)

5 0.46

8 0.48

10 0.72

12 0.83

14 1.21



Figure S3. Low-resolution TEM images and the corresponding size distributions of (a) 
LiYF4:Yb/Er/Mn (20/2/0 mol%), (b) LiYF4:Yb/Er/Mn (20/2/5 mol%), (c) 
LiYF4:Yb/Er/Mn (20/2/10 mol%) and (d) LiYF4:Yb/Er/Mn (20/2/14 mol%) 
nanocrystals. The size distributions of the nanocrystals were calculated by counting 
over 200 particles recorded in the TEM images.



Figure S4. Room-temperature UC emission spectra of cyclohexane solutions 
containing LiYF4:Yb/Er/Mn (20/2/14-30 mol%) nanoparticles with different Mn2+ 
doping levels, under 980 nm laser excitation (CW, 2 Wcm-2).



Figure S5. Upconversion luminescence decay curves of Er3+ emission at 551 and 653 
nm from the LiYF4:Yb/Er nanoparticles with 0 and 10 mol% Mn doping, under 
pulsed laser excitation at 980 nm.

Figure S6. The excitation power dependence of green and red UC emission of 
LiYF4:Yb/Er (20/2 mol%) NPs with 0 and 10 mol% Mn doping (n represents the 
numerical value of the slope determined from the linear fitting of the experimental 
results).



Figure S7. (a-b) XRD patterns and (c-d) TEM images of LiYF4:Gd/Mn (40/20 mol%) 
and NaGdF4:Mn (20 mol%) nanoparticles.



Table S3. Elemental analyses of Mn2+ in LiYF4:Gd/Mn (40/20mol%) and 
NaGdF4:Mn (10-30 mol%) by ICP-AES measurement.

Sample Nominal concentration 
(mol%)

ICP-AES result 
(mol%)

LiYF4:Gd/Mn (40/20mol%) 20 1.78

NaGdF4:Mn (30 mol%) 30 2.02

NaGdF4:Mn (20 mol%) 20 1.83

NaGdF4:Mn (10 mol%) 10 0.64



Figure S9. The downconversion emission spectra of the NaGdF4:Mn (10 and 30mol%) 
colloidal solutions under excitation at 275 nm.

Figure S8. The dominant energy transfer processes in the LiYF4:Gd/Mn (40/20 
mol%) (left) and NaGdF4:Mn (20 mol%) (right) nanoparticles. 



Figure S10. (a) XRD pattern of the as-synthesized NaYF4:Yb/Er nanoparticles doped 
with 40 mol% Mn2+ ions and the standard diffraction pattern of cubic-phase NaYF4 
(JCPDS No. 077-2042). Inset shows the TEM image of the corresponding 
nanoparticles. (b) Yb L3-edge XANES spectra recorded for 30 mol% Mn-
LiYF4:Yb/Er and 40 mol% Mn-NaYF4:Yb/Er nanoparticles. FT k3-weighted χ(k)-
function of EXAFS spectrum for Yb3+ in 30 mol% Mn-LiYF4:Yb/Er (c) and 40 mol% 
Mn-NaYF4:Yb/Er (d) with Yb-F fitting.



Table S4. Yb L3-edge and Mn K-edge EXAFS curve fitting parametersa

sample chemical bond CN R (Å) σ2 (Å2) ΔE0 (eV)

30mol%Mn-LiYF4
b

Yb-F

Mn-F

8.9

4.1

2.24

2.06

0.007

0.004

2.2

-6.5

40mol%Mn-NaYF4
b

Yb-F

Mn-F

8.6

6.1

2.22

2.06

0.010

0.004

1.7

-5.4
aCN is the coordination number; R is interatomic distance; σ2 is Debye-Waller factor 
(a measure of thermal and static disorder in absorber-scatterer distances); ΔE0 is the 
edge-energy shift. Error bounds of the structural parameters were estimated as N ± 
20%; R ± 1%; σ2 ± 20%; ΔE0 ± 20%. S0

2 were fixed to 0.77 for Yb L3-edge fitting and 
0.7 for Mn K-edge fitting. bYb L3-edge fitting range: 2.0 ≤ k (/Å) ≤ 8.5 and 1.0 ≤ R (Å) 
≤ 2.4; Mn K-edge fitting range: 2.0 ≤ k (/Å) ≤ 7.0 and 0.8 ≤ R (Å) ≤ 2.2.



Figure S11. XRD patterns of the as-synthesized LiYF4:Yb/Tm (25/0.5 mol%) 
nanoparticles obtained in the presence of 0, 10 and 20 mol% Mn2+ dopant ions, 
respectively.



Figure S12. Room-temperature UC emission spectra of cyclohexane solutions 
containing LiYF4:Yb/Tm/Mn (25/0.5/0-20 mol%) nanoparticles with different Mn2+ 
doping levels, under 980 nm laser excitation (CW, 2 Wcm-2). 

Figure S13. Upconversion luminescence decay curves of Tm3+ emission at 483 and 
793 nm from the LiYF4:Yb/Tm nanoparticles with 0, 10 and 20 mol% Mn doping, 
under pulsed laser excitation at 980 nm.



Figure S14. The emission spectra of cyclohexane solutions containing LiYbF4:Mn (10 
mol%) nanoparticles at 4K under 980 nm laser excitation. 



Figure S15. Low-resolution TEM images and size distributions of (a) LiYF4:Er 
(10mol% ), (b) LiYF4:Er/Mn (10/10 mol%) and (c) LiYF4:Er/Mn (10/20 mol%) 
nanocrystals. The size distributions of the nanocrystals were calculated by counting 
over 200 particles recorded in the TEM images.

Figure S16. (a) Emission spectra of the LiYF4:Er/Mn (10/0-20 mol%) nanocrystals, 
under the excitation of 980nm CW laser (2Wcm-2). (b) Upconversion luminescence 
decay curves of Er3+ emissions at 551 nm for the LiYF4:Er/Mn (10/x mol%) 
nanocrystals. Remarkably, the emission intensities and lifetimes of Er3+ were found to 
be independent of Mn2+ concentration. 

Notes and references

1 D. M. Roy, R. Roy, J. Electrochem. Soc., 1964, 111, 421-429.
2 A. V. Goryunov, A. I. Popov, N. M. Khajdukov and P.P.Fedorov, Mater. Res. Bull., 1992, 
27, 213-220.


