Supplementary Information (SI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2025 # **Electronic Supporting Information** # For # Photoactivatable and Photolabile Pharmacophores: Lessons Learned from Capsaicin Nils Imse,a,† Lucia Rojas,b,† Cristina Gil Herrero,c,d Sebastian Thallmair,c JeongSeop Rhee,*b Nadja A. Simeth*a,e,f - a. Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr.2, 37077Göttingen, Germany; E-mail: nadja.simeth@unigoettingen.de. - b. Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany. - c. Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt a. M., Germany. - d. Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. - e. Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany. - f. Department of Chemistry Ångström laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden. - † These authors contributed equally. # **Table of Contents** | 1. | Organic Synthesis and Purification: Materials and Methods | 3 | |----|--|------| | | 1.1. General annotation | 3 | | | 1.2. Reagents | 3 | | | 1.3. Chromatography | 3 | | | 1.4. Melting point | 3 | | | 1.5. Nuclear magnetic resonance spectroscopy (NMR) | 3 | | | 1.6. Mass spectrometry (MS) | 4 | | | 1.7. Infrared spectroscopy (IR) | 4 | | | 1.8. Liquid chromatography–mass spectrometry (LC–MS) | 4 | | 2 | Organic Synthesis Procedures and Compound Characterization | 5 | | | 2.1. Fatty Acid Chains | 5 | | | 2.2. Synthesis of Parent Capsaicinoids | . 13 | | | 2.3. Synthesis of Nitro-Capsaicinoids | . 18 | | 3. | Photophysical and Photochemical Characterization of Light-Sensitive Capsaicinoids | . 37 | | | 3.1. NO ₂ -CAP | . 38 | | | 3.2. NO ₂ -DHCAP | . 40 | | | 3.4. ONB-CAP | . 44 | | | 3.5. HPLC Trances and NMR Spectra of the Photochemical Conversion of NO ₂ -NV | . 46 | | | 3.6. HPLC Trances of the Photochemical Conversion of DEAC-NO ₂ -NV | . 47 | | 4. | Computational Chemistry | . 48 | | 5. | Biological Assays | . 51 | | 6. | X-Ray Analysis: Structure Tables | . 55 | | 7 | References | 68 | # 1. Organic Synthesis and Purification: Materials and Methods #### 1.1. General annotation All reactions, involving air or moisture sensitive reagents have been handled under standard *Schlenk* technique. #### 1.2. Reagents All chemicals were obtained from the chemical supplier with purities of >95%. # 1.3. Chromatography Thin-layer-chromatography (TLC) has been performed on 0.25 mm Silica-Gel 60 F plates with a 254 nm fluorescence indicator from *Merck*. The substance detection took place by light with the wavelength of 254 nm und 360 nm. Non-UV-active substances have been visualized by staining the plates with a potassium permanganate solution and gentle heating afterwards. For the column chromatography Merck Silica gel of the type Geduran® Si 60 (40-63 μ m) was used. #### 1.4. Melting point The melting point was determined with a Cole-Parmer™ Digitales Stuart™ Melting Point Apparatus SMP20. # 1.5. Nuclear magnetic resonance spectroscopy (NMR) Recordings of NMR spectra have been performed on a Bruker Avance III HD 400 at frequencies of 400 MHz (1 H-NMR), 101 MHz (13 C-NMR) and 162 MHz (31 P-NMR) and on a Bruker Avance III HD 300 at frequencies of 300 MHz (1 H-NMR) and 75 MHz (13 C-NMR). The chemical shift δ is shown in ppm, based on the standard tetramethyl silane. The solvent signal was used as an internal reference signal. The coupling constant J is shown in Hertz (Hz). For characterization the following abbreviations have been used: s (singlet), d (doublet) and m (multiplett). The solvent signals are shown in the following table S1. Table S1: Solvent signals of Chloroform- d_1 , dimethyl sulfoxide- d_6 and methanol- d_4 . | Solvent | ¹ H-NMR | ¹³ C-NMR | |--|--------------------|---------------------| | Chloroform-d (CDCl ₃) | 7.26 ppm | 77.2 ppm | | Dimethyl sulfoxide-d ₆ (DMSO-d ₆) | 2.50 ppm | 39.5 ppm | | Methanol-d ₄ (CD ₃ OD) | 3.31 ppm | 49.0 ppm | The evaluation of the NMR-spectra was done with *MestReNova* 14.3.3-33362 from *Mestrelab Research S.L.* #### 1.6. Mass spectrometry (MS) ESI and ESI-HRMS spectra have been recorded on a Time-of-flight spectrometer (microTOF) from Bruker. Shown is the ratio between mass and charge and the relative intensities in relation to the basic peak (I = 100). #### 1.7. Infrared spectroscopy (IR) The infrared spectra have been recorded on a spectrometer from *Bruker* of the type Alpha-P ATR. Liquid samples have been measured as film, solid samples were placed as pure substance. The evaluation of the spectra was done with Opus 6.5 from *Bruker*. Thr spectral range from 4000 cm⁻¹ to 400 cm⁻¹ was recorded. # 1.8. Liquid chromatography–mass spectrometry (LC–MS) LC-MS was performed on an Agilent 1260 Infinity II combined with an InfinityLab LC/MSD iQ mass detector (ESI) using an InfinityLab Poroshell 120 EC-C18 column at 40 $^{\circ}$ C eluted with MeCN/H₂O + 0.1% formic acid. #### 2. Organic Synthesis Procedures and Compound Characterization #### 2.1. Fatty Acid Chains #### (5-Carboxypentyl)triphenylphosphonium bromide (2) The synthesis with adapted from a literature-known procedure.¹ ω -Bromohexanoic acid (5.70 g, 29.2 mmol, 1.0 eq.) and triphenylphosphine (8.30 g, 31.4 mmol, 1.1 eq.) were added to MeCN (40 mL) and the mixture was refluxed for 16 h. Afterwards, the solvent was removed under reduced pressure, the solid residue was ground to a fine powder and washed with Et₂O (3 x 40 mL) to yield the title compound (13.30 g, 29.20 mmol, quant.) as colorless solid. ¹**H-NMR** (400 MHz, MeOD) δ = 7.98 – 7.71 (m, 15H), 3.55 – 3.40 (m, 2H), 2.38 – 2.26 (m, 2H), 1.83 – 1.58 (m, 6H). ¹³C-NMR (101 MHz, MeOD) δ = 175.7, 134.89 (d, ${}^{3}J_{\text{C-P}}$ = 3.0 Hz), 133.44 (d, ${}^{2}J_{\text{C-P}}$ = 10.0 Hz), 130.15 (d, ${}^{2}J_{\text{C-P}}$ = 12.6 Hz), 118.56 (d, ${}^{1}J_{\text{C-P}}$ = 86.4 Hz), 33.0, 29.60 (d, ${}^{2}J_{\text{C-P}}$ = 16.4 Hz), 23.7, 21.90 (d, ${}^{3}J_{\text{C-P}}$ = 4.3 Hz), 21.25 (d, ${}^{1}J_{\text{C-P}}$ = 51.3 Hz). ³¹**P-NMR** (162 MHz, MeOD) δ = 23.81. **HR-MS** (ESI): m/z predicted for $C_{24}H_{26}O_2P$ [M+H] *: 377.1665, found: 377.1666. **MS** (ESI): m/z (%) = 377.2 (100) [M-Br]⁺. IR (ATR) [cm⁻¹]: 2923, 1698, 1432, 1377, 1213, 1188, 1111, 744, 717, 683. **Mp.**: 196–198 °C. Figure S1: ¹H-NMR of **2** in MeOD. S7 #### (E)-8-Methylnon-6-enoic acid (5) procedure.2 (5-The synthesis with adapted from literature-known а Carboxypentyl)triphenylphosphonium bromide (3.00 g, 6.57 mmol, 1.0 eq.) was dissolved in dry THF (80 mL) and at 0°C potassium tert-butoxide (1.53 g, 13.89 mmol, 2.0 eq.) was added slowly, upon which the mixture turns orange. After 5 minutes, iso-butyraldehyde (720 µL, 7.89 mmol, 1.2 eq.) was added accompanied by a decolorization of the solution and the mixture was stirred for 16 h at RT. Afterwards, water (80 mL) was added at 0°C and the solution was acidified with 6 M HCl to a pH of 2. The Solution was extracted with EtOAc (3 x 80 mL), the combined organic layers were dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude material was purified via column chromatography on silica (EtOAc: pentane 1:4 + 0.5 % HOAc) to yield the intermediate compound (660 mg) as colorless oil. To obtain the *E*-configuration of the acid, the intermediate (660 mg) was mixed with nitric acid (6 M, 200 μ L) and sodium nitrite solution (2 M, 300 μ L) and the mixture was heated to 75 °C for 40 minutes. After cooling down, water (10 mL) was added, and the solution was extracted with Et₂O (3 x 20 mL). After drying of the organic layer with magnesium sulfate and removal of the solvent under reduced pressure, the crude material was purified via column chromatography on silica (EtOAc: pentane 1:4 +0.5% HOAc) to yield the title compound (484 mg, 2.8 mmol, 43%) as colorless oil. Further purification is needed, due to impurities, but the product is shown via ESI-MS and it is a mixture between the *E*-and the *Z*-conformation (4:1, via NMR and comparison with the literature). The isomeric mixture was used for further synthesis. ¹**H-NMR** (400 MHz, CDCl₃) δ = 5.42 – 5.28 (m, 2H), 2.37 – 2.32 (m, 2H), 2.28 – 2.17 (m, 1H), 2.10 – 1.95 (m, 2H), 1.70 – 1.58 (m, 2H), 1.45 – 1.35 (m, 2H), 1.01 – 0.91 (m, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ = 180.1, 138.2, 126.4, 34.0, 32.1, 31.0, 29.0, 24.1, 22.7. **HR-MS** (ESI): m/z predicted for $C_{10}H_{18}O_2[M-H]^-$: 169.1234, found: 169.1235. **MS** (ESI): m/z (%) = 169.1 (100) [M-H]⁻. **IR** (ATR) [cm⁻¹]: 2956, 2929, 2877, 1705, 1466, 1414, 1280, 1234, 971, 739. Figure S4: ¹³C-NMR of **5** in CDCl₃. Figure S5: 13 C-APT-NMR of **5** in CDCl₃. #### 8-Methylnonanoic acid (6) (*E*)-8-Methylnon-6-enoic acid (6.10 g, 35.80 mmol, 1.0 eq.) was dissolved in diisopropylether (100 mL) and palladium on carbon (10% Pd, 3.8 g, 10 mol%) was added. The mixture was stirred under a hydrogen atmosphere (1 atm) for 16 h and was afterwards filtered through a celite pad to remove the catalyst. The obtained product was purified via column chromatography on silica (EtOAc: pentane 1:4+0.5% HOAc) to yield the title compound (3.9 g, 22.7 mmol, 64 %) as clear oil. ¹**H-NMR** (400 MHz, CDCl₃) δ 2.34 (t, J = 7.5 Hz, 2H), 1.68 – 1.58 (m, 2H), 1.51 (dp, J = 13.2, 6.6 Hz, 1H), 1.39 – 1.10 (m, 11H), 1.05 – 0.87 (m, 6H), 0.86 (d, J = 6.6 Hz, 6H). ¹³C-NMR (101 MHz, CDCl₃) δ 179.9, 39.0, 34.1, 29.5, 29.1, 28.0, 27.2, 24.7, 22.7. **HR-MS** (ESI): m/z calc. for $C_{10}H_{19}O_2$ [M-H]⁻: 171.1391, found: 171.1395. **MS** (ESI): m/z (%) = 171.1 (100) [M-H]⁻.
Figure S6: ¹H-NMR of compound **6** in CDCl₃. Figure S7: ¹³C-NMR of compound **6** in CDCl₃. #### 2.2. Synthesis of Parent Capsaicinoids # Capsaicin (CAP) The synthesis with adapted from a literature-known procedure.² In dry DMF (50 mL), (*E*)-8-methylnon-6-enoic acid (1.50 g, 8.82 mmol, 1.0 eq.), vanillyl amine (2.0 g, 10.58 mmol, 1.2 eq.), TBTU (3.4 g, 10.58 mmol, 1.2 eq.) and TEA (3.7 mL, 26.44 mmol, 3.0 eq.) were dissolved at 0°C. The reaction mixture was stirred for 16 hat RT. Afterwards, the mixture was quenched with brine (50 mL) and the pH was changed to slightly acidic with aq. HCl (6 M). To the solution, water (50 mL) was added and the mixture was extracted with EtOAc (3 x 100 mL). The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude material was further purified via column chromatography on silica (Pentane: EtOAc 1:1) to yield the title product (1.26 g, 4.13 mmol, 47%) as waxy solid. ¹**H-NMR** (400 MHz, CDCl₃) δ 6.86 (d, J = 8.0 Hz, 1H), 6.81 – 6.71 (m, 2H), 6.13 (t, J = 5.7 Hz, 1H), 5.28 – 5.12 (m, 2H), 4.34 (d, J = 5.6 Hz, 2H), 3.86 (s, 3H), 2.66 – 2.47 (m, 1H), 2.23 (t, J = 7.6 Hz, 2H), 2.10 – 2.02 (m, 3H), 1.77 – 1.59 (m, 2H), 1.39 (tt, J = 10.2, 6.4 Hz, 2H), 0.95 (d, J = 6.7 Hz, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 173.3, 146.9, 145.2, 138.0, 130.2, 126.7, 120.7, 114.5, 110.8, 55.9, 43.6, 36.7, 29.6, 27.0, 26.5, 25.5, 23.2. **HR-MS** (ESI): m/z calc. for $C_{18}H_{27}NO_3Na$ [M+Na]⁺: 328.1883, found: 328.1885. **MS** (ESI): m/z (%) = 328.2 (100) [M+Na]⁺. Figure S9: 13C-NMR of compound CAP in CDCI3. #### Dihydrocapsaicin (DHCAP) The synthesis with adapted from a literature-known procedure.² In dry DMF (50 mL), 8-methylnonanoic acid (1.52 g, 8.82 mmol, 1.0 eq.), vanillyl amine (2.00 g, 10.58 mmol, 1.2 eq.), TBTU (3.4 g, 10.58 mmol, 1.2 eq.) and TEA (3.7 mL, 26.44 mmol, 3.0 eq.) were dissolved at 0°C. The reaction mixture was stirred for 16 h at RT. Afterwards, the mixture was quenched with brine (50 mL) and the pH was changed to slightly acidic with aq. HCl (6 M). To the solution, water (50 mL) was added and extracted with EtOAc (3 x 100 mL). The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude material was further purified via column chromatography on silica (Pentane: EtOAc 1:1) to yield the title product (1.20 g, 3.91 mmol, 44 %) as clear oil. ¹**H-NMR** (400 MHz, CDCl₃) δ 6.85 (d, J = 8.0 Hz, 1H), 6.81 – 6.72 (m, 2H), 5.80 (s, 1H), 4.35 (d, J = 5.5 Hz, 2H), 3.87 (s, 3H), 2.24 – 2.16 (m, 2H), 2.08 (s, 1H), 1.69 – 1.59 (m, 2H), 1.56 – 1.42 (m, 1H), 1.36 – 1.21 (m, 6H), 1.18 – 1.08 (m, 2H), 0.85 (d, J = 6.6 Hz, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 173.3, 146.7, 145.2, 130.2, 120.8, 114.4, 110.7, 56.0, 43.7, 39.0, 36.8, 29.6, 29.4, 28.0, 27.3, 25.9, 22.7, 20.7. **HR-MS** (ESI): m/z calc. for C₁₈H₂₉NO₃Na [M+Na]⁺: 330.2047, found: 330.2040. **MS** (ESI): m/z (%) = 330.2 (100) [M+Na]⁺. Figure S10: ¹H-NMR of compound **DHCAP** in CDCl₃. Figure S11: 13 C-NMR of compound **DHCAP** in CDCl₃. # *N*-(4-hydroxy-3-methoxybenzyl)nonanamide (NV) The synthesis was adapted from a known procedure.³ Vanillyl amine hydrochloride (2.00 g, 10.50 mmol, 1.0 eq.) was dissolved with sodium bicarbonate (3.78 g, 45 mmol, 4.3 eq.) in water (30 mL) and stirred for 10 minutes. Then, chloroform (40 mL) was added, and the mixture was stirred for another 15 minutes. Pelargonyl chloride (2.50 mL, 2.45 g, 13.9 mmol, 1.3 eq.), dissolved in chloroform (10 mL) was added slowly over 30 minutes at RT. The reaction mixture was heated to 40°C for 1 h and afterwards extracted with chloroform (3 x 20 mL). The organic phase was washed with 1 M HCl (2 x 50 mL) and then the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica (pentane: EtOAc 3:1 \rightarrow 1:1 \rightarrow 1:1 + 10% MeOH). The title compound was yielded as yellowish oily substance (2.80, 9.57 mmol, 91%). Figure S12: 1H-NMR of compound NV in CDCI₃. # 2.3. Synthesis of Nitro-Capsaicinoids # 4-(Hydroxymethyl)-2-methoxy-5-nitrophenol (13) CHO $$O_2N$$ O_2N O_2N O_2N O_2N O_3N O_4N O_4 Compound **12**⁴ (6.27 g, 31.86 mmol, 1.0 eq.) was dissolved in MeOH (250 mL) and sodium borohydride (2.90 g, mmol, 2.0 eq.) was added slowly. The reaction mixture was stirred for 30 minutes and afterwards, HCl (6 M) was added until a pH of 7 was reached. The solvent was mostly removed, and the suspension was filtered off and washed with water. The filter cake was dried *in vacuo*, to yield the title compound (5.10 g, 25.6 mmol, 80%) as yellowish orange solid. ¹**H-NMR** (300 MHz, DMSO): δ = 9.92 (s, 1H), 7.76 (s, 1H), 7.34 (s, 1H), 4.79 (d, J = 5.3 Hz, 2H), 3.90 (s, 3H). ¹³**C-NMR** (75 MHz, DMSO): δ = 153.3, 145.4, 138.9, 132.9, 111.7, 110.5, 60.6, 56.4. **HR-MS** (ESI): m/z calc. for C₈H₉NO5 [M-H]⁻: 198.0408, found: 198.0415. **MS** (ESI): m/z (%) = 198.0 (100) [M-H]⁻, 397.1 (70) [2M-H]⁻. **IR** (ATR) [cm⁻¹]: 2360, 2157, 2005, 1583, 1525, 1494, 1289, 1213, 1151, 1066, 1035. **Mp.**: 186–189 °C. Figure S13: ¹H-NMR of compound **13** in CDCI₃. Figure S14: 13 C-NMR of compound 13 in CDCI₃. #### 4-(Bromomethyl)-2-methoxy-5-nitrophenol (14) OH O2N $$O_2N$$ O_2N O_2N O_2N O_2N O_2N O_2N O_2N O_3N O_4N Compound **14** (2.50 g, 12.56 mmol, 1.0 eq.) was dissolved in DCM (80 mL) and the reaction mixture was chilled with an ice bath. Afterwards, PBr₃ (4.0 mL, 42 mmol, 3.3 eq.) was added slowly and the mixture was stirred for 2 d while reaching room temperature. Water (100 mL) was added, the organic phase was separated, and the aqueous phase was extracted with EtOAc (3 x 80 mL). The combined organic phases were dried with magnesium sulfate and the solvent was removed *in vacuo* to yield the crude product, which was purified by column chromatography (20% EtOAc/Pentane) on silica to yield the title compound (3.22 g, 12.29 mmol, 98%) as yellowish solid. ¹**H-NMR** (300 MHz, DMSO): δ = 7.56 (s, 1H), 7.30 (s, 1H), 4.94 (s, 2H), 3.90 (s, 3H). ¹³**C-NMR** (75 MHz, DMSO): δ = 152.6, 147.5, 140.4, 125.9, 115.4, 112.6, 56.8, 31.9. **HR-MS** (ESI): m/z calc. for $C_8H_8NO_4$ [M+H]⁺: 182.0448, found: 182.0458. **MS** (ESI): m/z (%) = 182.1 (100) [M-Br]+. **IR** (ATR) [cm⁻¹]: 3485, 2360, 2339, 1518, 1497, 1332, 1283, 1215, 1056, 897, 806... **Mp.**: 118–121 °C. Figure S15: 1H-NMR of compound 14 in CDCI₃. Figure S16: 13C-NMR of compound 14 in CDCl₃. #### 4-(Aminomethyl)-2-methoxy-5-nitrophenol (15) Hexamine (1.81 g, 12.9 mmol, 1.1 eq.) and **14** (3.22 g, 12.3 mmol, 1.0 eq.) were dissolved in chloroform (80 mL) and the mixture was refluxed for 2 h. After the mixture cooled down, the white precipitate was filtered off and washed with chloroform. The intermediate was dried and refluxed in a mixture of ethanol (25 mL), water (3.4 mL), and conc. hydrochloric acid (7.20 mL) until the solution became clear. The solution was chilled to 0 °C and the precipitated ammonium chloride was filtered off. The solvent of the so-obtained solution was removed *in vacuo* to give the title compound (2.66 g, 11.40 mmol, 92%) as hydrochloride salt. ¹**H-NMR** (300 MHz, MeOD): δ = 7.69 (s, 1H), 7.27 (s, 1H), 4.39 (s, 2H), 4.03 (s, 3H). ¹³**C-NMR** (75 MHz, MeOD): δ = 154.0, 149.2, 142.8, 122.0, 116.3, 113.5, 57.4, 42.4. **HR-MS** (ESI): m/z calc. for $C_8H_{10}N_2O_4$ [M-H]⁺: 199.0713, found: 199.0726. **MS** (ESI): m/z (%) = 182.0 (100) [M-NH₃]⁺, 199.1 (50) [M+H]⁺. **IR** (ATR) [cm⁻¹]: 2360, 2339, 1518, 1457, 1332, 1286, 1207, 1056, 999, 882, 842, 806. Mp.: decomposition at ~ 185 °C. Figure S18: 13C-NMR of compound 15 in CDCl₃. # (E)-N-(4-hydroxy-5-methoxy-2-nitrobenzyl)-8-methylnon-6-enamide (NO₂-CAP) In dry DMF (40 mL), (E)-8-methylnon-6-enoic acid (1.13 g, 6.7 mmol, 1.0 eq.), 4-(aminomethyl)-2-methoxy-5-nitrophenol (1.87 g, 8.0 mmol, 1.2 eq.), TBTU (2.57 g, 8.0 mmol, 1.2 eq.) and TEA (2.8 mL, 20.0 mmol, 3.0 eq.) were dissolved at 0°C. The reaction mixture was stirred for 16 h. Afterwards, the mixture was quenched with brine (50 mL) and the pH was changed to slightly acidic with aq. HCl (6 M). To the solution, water (50 mL) was added and extracted with EtOAc (3 x 100 mL). The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude material was further purified via column chromatography on silica (pentane: EtOAc 1:1) and recrystallisation (2:1 hexane: Et₂O) to yield the title compound (490 mg, 1.4 mmol, 22%) as shiny yellow crystals. ¹**H-NMR** (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.07 (s, 1H), 6.54 (t, J = 6.5 Hz, 1H), 5.23 – 5.06 (m, 2H), 4.59 (d, J = 6.5 Hz, 2H), 3.94 (s, 3H), 2.53 (ddt, J = 13.2, 8.7, 6.6 Hz, 1H), 2.29 – 2.14 (m, 2H), 2.01 (dddd, J = 7.4, 5.7, 4.4, 1.3 Hz, 2H), 1.70 – 1.54 (m, 2H), 1.42 – 1.25 (m, 2H), 0.90 (d, J = 6.6 Hz, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 173.5, 151.3, 145.3, 141.2, 138.0, 127.6, 126.6, 114.1, 111.8, 56.6, 41.7, 36.6, 29.5, 27.0, 26.5, 25.3, 23.2. **HR-MS** (ESI): m/z calc. for $C_{18}H_{26}N_2O_5Na$ [M+Na]⁺: 373.1734 found: 373.1746. **MS** (ESI): m/z (%) = 373.2 (100) [M+Na]⁺. **IR** (ATR) [cm⁻¹]: 1644, 1591, 1525, 1460, 1322, 1280, 1237, 1207, 1057, 879. **Mp.**: 92.8 - 93.2°C. Figure S20: 13C-NMR of compound NO2-CAP in CDCl3. #### *N*-(4-Hydroxy-5-methoxy-2-nitrobenzyl)-8-methylnonanamide (NO₂-DHCAP) In dry DMF (40 mL), 8-methylnonanoic acid (1.52 g, 8.82 mmol, 1.0 eq.), 4-(aminomethyl)-2-methoxy-5-nitrophenol (2.0 g, 10.58 mmol, 1.2 eq.), TBTU (3.4 g, 10.58 mmol, 1.2 eq.) and TEA (3.7 mL, 26.44 mmol, 3.0 eq.) were dissolved at 0°C. The reaction mixture was stirred for 16 h. Afterwards, the mixture was quenched with brine (50 mL) and the pH was changed to slightly acidic with aq. HCI (6 M). To the solution, water (50 mL) was added and extracted with EtOAc (3 x 100 mL). The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude material was
further purified via column chromatography on silica (pentane: EtOAc 1:1) and recrystallisation (2:1 Hexane: Et₂O) to yield the final product (380 mg, 1.1 mmol, 16%) as slightly yellow solid. ¹**H-NMR** (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.07 (s, 1H), 6.53 (t, J = 6.5 Hz, 1H), 4.59 (d, J = 6.5 Hz, 2H), 3.94 (s, 3H), 2.24 – 2.13 (m, 2H), 1.59 (dd, J = 15.6, 6.3 Hz, 2H), 1.48 (dp, J = 13.2, 6.6 Hz, 1H), 1.32 – 1.18 (m, 6H), 1.15 – 1.06 (m, 2H), 0.83 (d, J = 6.6 Hz, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 173.7, 151.3, 145.4, 141.2, 127.6, 114.2, 111.8, 56.6, 41.7, 38.9, 36.7, 29.6, 29.3, 27.9, 27.2, 25.7, 22.6. **HR-MS** (ESI): m/z calc. for $C_{18}H_{28}N_2O_5Na$ [M+Na]⁺: 375.1890, found: 375.1898. **MS** (ESI): m/z (%) = 375.2 (100) [M+Na]⁺. **IR** (ATR) [cm⁻¹]: 2920, 1644, 1592, 1521, 1497, 1325, 1273, 1207, 1054, 882, 809. **Mp.**: 100.3-101.5 °C Figure S21: 1H-NMR of compound NO₂-DHCAP in CDCl₃. Figure S22: 13C-NMR of compound NO₂-DHCAP in CDCl₃. # *N*-(4-Hydroxy-5-methoxy-2-nitrobenzyl)nonanamide (NO₂-NV) $$C_8H_{17}$$ C_1 C_8H_{17} C_1 C_8H_{17} C_1 To dry DMF (5 mL), **15** (468 mg, 2.0 mmol, 1.0 eq.) and DIPEA (680 μ L, 4.0 mmol, 2.0 eq.) were added and stirred for 15 minutes. Afterwards, nonanoyl chloride (360 μ L, 2.0 mmol, 1.0 eq.) was added and the reaction mixture was stirred for 12 h. The reaction mixture was diluted with water (30 mL) and extracted with DCM (3 x 30 mL). The organic phase was dried with magnesium sulfate and the solvent was removed *in vacuo* to yield the crude product, which was purified by recrystallisation from MTBE/ heptane (8:1) to yield the title product (190 mg, 0.56 mmol, 28%) as yellow crystals. ¹**H-NMR** (300 MHz, CDCl₃): δ = 7.69 (s, 1H), 7.07 (s, 1H), 6.52 (t, J = 6.5 Hz, 1H), 4.59 (d, J = 6.5 Hz, 2H), 3.94 (s, 3H), 2.17 (dd, J = 8.3 Hz) 1.64 - 1.55 (m, 2H), 1.31 - 1.17 (m, 10H), 0.85 (t, J = 6.9 Hz, 3H). ¹³**C-NMR** (75 MHz, CDCl₃): δ = 173.7, 151.3, 145.4, 141.2, 127.6, 114.2, 111.8, 77.3, 56.6, 41.7, 36.8, 31.8, 29.3, 29.2, 29.1, 25.6, 22.6, 14.1. **HR-MS** (ESI): m/z calc. for $C_{17}H_{26}N_2O_5$ [M-H]⁻: 337.1769, found: 337.1770. **MS** (ESI): m/z (%) = 337.2 [M-H]⁻. **IR** (ATR) [cm⁻¹]: 2919, 2849, 2363, 2339, 1650, 1521, 1322, 1273, 1240, 1210. **Mp.**: 92–95 °C. Figure S24: ¹³C-NMR of compound **NO₂-NV** in CDCI₃. Figure S25: ORTEP plot of the X-ray structure of **NO**₂-**NV** at 50% probability of ellipsoid level. # (E)-N-(4-hydroxy-5-methoxy-2-nitrobenzyl)-8-methylnon-6-enamide (NO₂-CAP) In dry DMF (40 mL), (E)-8-methylnon-6-enoic acid (1.13 g, 6.7 mmol, 1.0 eq.), 4-(aminomethyl)-2-methoxy-5-nitrophenol (1.87 g, 8.0 mmol, 1.2 eq.), TBTU (2.57 g, 8.0 mmol, 1.2 eq.) and TEA (2.8 mL, 20.0 mmol, 3.0 eq.) were dissolved at 0°C. The reaction mixture was stirred for 16 h. Afterwards, the mixture was quenched with brine (50 mL) and the pH was changed to slightly acidic with aq. HCl (6 M). To the solution, water (50 mL) was added and extracted with EtOAc (3 x 100 mL). The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude material was further purified via column chromatography on silica (pentane: EtOAc 1:1) and recrystallisation (2:1 hexane: Et₂O) to yield the title compound (490 mg, 1.4 mmol, 22%) as shiny yellow crystals. ¹**H-NMR** (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.07 (s, 1H), 6.54 (t, J = 6.5 Hz, 1H), 5.23 – 5.06 (m, 2H), 4.59 (d, J = 6.5 Hz, 2H), 3.94 (s, 3H), 2.53 (ddt, J = 13.2, 8.7, 6.6 Hz, 1H), 2.29 – 2.14 (m, 2H), 2.01 (dddd, J = 7.4, 5.7, 4.4, 1.3 Hz, 2H), 1.70 – 1.54 (m, 2H), 1.42 – 1.25 (m, 2H), 0.90 (d, J = 6.6 Hz, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 173.5, 151.3, 145.3, 141.2, 138.0, 127.6, 126.6, 114.1, 111.8, 56.6, 41.7, 36.6, 29.5, 27.0, 26.5, 25.3, 23.2. **HR-MS** (ESI): m/z calc. for $C_{18}H_{26}N_2O_5Na$ [M+Na]⁺: 373.1734 found: 373.1746. **MS** (ESI): m/z (%) = 373.2 (100) [M+Na]⁺. **IR** (ATR) [cm⁻¹]: 1644, 1591, 1525, 1460, 1322, 1280, 1237, 1207, 1057, 879. **Mp.**: 92.8 - 93.2°C Figure S28: ¹H-NMR of compound **CAP** in CDCI₃. # (*E*)-*N*-(4-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-3-methoxybenzyl)-8-methylnon-6-enamide (ONB-CAP) Br O₂N O HN $$K_2CO_3$$ Acetone $60^{\circ}C$, $16h$ 87% MeO O Me OMe **CAP** (300 mg, 1 mmol, 1.0 eq.) and 1-(bromomethyl)-4,5-dimethoxy-2-nitrobenzene (324 mg, 1.2 mmol, 1.2 eq.) were dissolved in acetone (5 mL) and potassium carbonate (280 mg, 2.0 mmol, 2 eq.) was added. The mixture was stirred at 60°C for 16 h. Afterwards, the solvent was removed under reduced pressure and the residue was dissolved in water (10 mL) and ethyl acetate (20 mL). The aqueous layer was extracted with ethyl acetate (3 x 10 mL) and the combined organic layer was dried over magnesium sulfate. The solvent was removed under reduced pressure and the crude material was purified via column chromatography (silica, 50→100% EtOAc in pentane). The final compound (474 mg, 87%, 0.87 mmol) was yielded as yellowish solid. ¹**H-NMR** (400 MHz, CDCl₃) δ 7.72 (d, J = 4.1 Hz, 1H), 7.46 (d, J = 2.6 Hz, 1H), 6.87 – 6.81 (m, 2H), 6.75 (m, 1H), 5.98 – 5.80 (m, 1H), 5.55 – 5.45 (m, 2H), 5.25 – 5.04 (m, 2H), 4.35 (dd, J = 5.8, 3.8 Hz, 2H), 3.96 – 3.91 (m, 6H), 3.86 (d, J = 3.5 Hz, 3H), 2.65 – 2.43 (m, 1H), 2.20 (td, J = 7.7, 2.2 Hz, 2H), 2.10 – 1.95 (m, 2H), 1.73 – 1.54 (m, 2H), 1.44 – 1.31 (m, 2H), 0.90 (dd, J = 6.7, 2.7 Hz, 6H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 172.9, 154.0, 149.9, 149.9, 147.8, 147.0, 147.0, 138.9, 138.0, 132.5, 129.8, 126.7, 120.2, 114.5, 114.5, 111.8, 109.5, 107.9, 68.4, 68.4, 56.4, 56.0, 43.4, 43.3, 36.7, 29.6, 27.0, 26.5, 25.5, 23.2. **HR-MS** (ESI): m/z calc. for $C_{27}H_{36}N_2O_7Na$ [M+Na]⁺: 523.2415 found: 523.2421. **MS** (ESI): m/z (%) = 523.3 (100) [M+Na]⁺. **Mp:** 123.1 °C **IR** (ATR) [cm⁻¹]:2162, 1635, 1512, 1457, 1325, 1273, 1216, 1133, 1069, 1033, 794. Figure S27: ¹H-NMR of compound **ONB-CAP** in CDCl₃ # *N*-(4-((7-(diethylamino)-2-oxo-2H-chromen-4-yl)methoxy)-5-methoxy-2-nitrobenzyl)-nonanamide (DEAC-NO₂-NV) $$\begin{array}{c} & & & \\ & &$$ The title compound was synthesized analogously to **ONB-CAP** (*vide supra*) starting from **NO**₂-**NV** (30 mg, 1.0 eq.) and 4-(bromomethyl)-7-(diethylamino)-2H-chromen-2-one (1.2 eq.). An analytical fraction was purified via column chromatography (silica, $50\rightarrow100\%$ EtOAc in pentane) to give a yellow solid. The yield was not determined. ¹**H-NMR** (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.42 (d, J = 9.0 Hz, 1H), 7.31 (s, 2H), 7.20 (s, 1H), 6.70 (d, J = 9.1 Hz, 1H), 6.62 (d, J = 2.6 Hz, 1H), 6.44 (t, J = 6.7 Hz, 1H), 6.34 (s, 1H), 5.30 (s, 2H), 4.68 (d, J = 6.4 Hz, 2H), 4.05 (s, 3H), 3.48 (q, J = 7.1 Hz, 4H), 2.22 (t, J = 7.7 Hz, 2H), 1.29 (dq, J = 13.7, 5.7 Hz, 19H), 0.91 (t, J = 6.6 Hz, 3H). ¹³**C-NMR** (101 MHz, CDCl₃) δ 173.4, 161.8, 156.3, 154.4, 149.0, 146.4, 140.4, 130.3, 124.4, 115.0, 110.4, 66.9, 56.7, 45.2, 41.6, 36.7, 31.8, 29.3, 29.3, 29.2, 25.6, 22.7, 14.1, 12.4. **HR-MS** (ESI): m/z calc. for $C_{31}H_{41}N_3O_7$ [M+H]⁺: 568.3017 found: 568.3024. m/z calc. for $C_{31}H_{40}N_3O_7Na$ [M+Na]⁺: 590.2837 found: 590.2840. Figure S28: ¹H-NMR of compound **DEAC-NO₂-NV** in CDCl₃. Figure S29: ¹H-NMR of compound **DEAC-NO₂-NV** in CDCl₃. #### 3. Photophysical and Photochemical Characterization of Light-Sensitive Capsaicinoids #### **Chemical actinometry** A modification of a standard protocol was applied for the determination of the photon flux.⁵ An aqueous H_2SO_4 solution (0.05 M) containing freshly recrystallized $K_3[Fe(C_2O_4)_3]$ (41 mM, 2 mL) was irradiated at 20 °C for a given period of time in the dark with a 365 nm and 405 nm LED at a controlled, fixed, low
intensity. The solution was then diluted with 1.0 mL of an aqueous H_2SO_4 solution (0.5 M) containing phenanthroline (1 g/L) and NaOAc (122.5 g/L) and left to react for 10 min. The absorption at 510 nm was measured and compared to an identically prepared non-irradiated sample. The concentration of [Fe(phenanthroline)₃]²⁺ complex was calculated using its molar absorptivity (ϵ = 11100 M⁻¹ cm⁻¹) and considering the dilution. The quantity of Fe²⁺ ions expressed in mol was plotted against time and the slope, obtained by linear fitting the data points to the equation y = ax +b, equals the rate of formation of the Fe²⁺ ion at the given wavelengths. The rate can be converted into the photon flux (I) by dividing it by the quantum yield of [Fe(phenanthroline)₃]²⁺ complex (Φ_{365nm} = 1.29). The obtained photon fluxes were I_{365nm} = 2.38122 x 10⁻⁵ mE s⁻¹. #### Quantum yield The quantum yield of the photochemical ring opening is determined using an initial slope method. The sample is irradiated with an LED and the natural logarithm of the absorbance data is plotted against time. From equation 1,⁵ we can determine the quantum yield of the photochemical ring opening. Eq. 1 $$\phi = \frac{-k [X]_0 \ V}{I \ (1-10^{-AbS(0)})}$$ Where ϕ is the quantum yield; -k is the reaction rate; [X] is the concentration of the closed form in M⁻¹; V is the volume in mL and I is the photon flux in mE s⁻¹. Applying first order kinetics, the rate -k can be taken from the slope of the natural logarithm of absorbance vs. time. # 3.1. NO₂-CAP ### 3.2. NO₂-DHCAP # 3.3. NO₂-NV #### **3.4. ONB-CAP** #### 3.5. HPLC Trances and NMR Spectra of the Photochemical Conversion of NO₂-NV In Figure S30, HPLC-traces of **NO₂-NV** before and after irradiation with 365 nm light (ThorLabs 365 nm LED, full power) in a transparent HPLC vial for *ca*. 60 min (recoded at 220 nm in a gradient of 5→95% MeCN in water with 0.1% formic acid using an LC-MS). Analysis of the fractions showed: 3.5–4.0 min: 230.1 (MH⁺, 100%), 180.0 (90%) indicative for the ONB fragments (calculated exact mass of nitrosoaldehyde species: 181.04). 5.6 min: 158.1 (MH⁺, 100%), indicative for nonivamide (calculated exact mass: 157.15). Also, the MH⁺ signal of **NO₂-NV** could still be detected; however, a qualification was due to the overlap of signals not feasible. Thus, we decided to also follow the reaction by ¹H-NMR spectroscopy. Figure S30: HPLC traces of NO₂-NV before (blue) and after (orange) 365 nm irradiation. In Figure S31, ¹H-NMR spectra (400 MHz) of **NO₂-NV** before and at different times of irradiation with 365 nm light (10W, handheld torch) in a standard NMR tube (*ca.* 1.5 mg/mL). The figures show that **NO₂-NV** could be converted quantitatively into photoproducts. However, long irradiation times were required, due to the comparable high concentrations needed for NMR spectroscopy, the low quantum yield of the reaction (*cf.* 3.4% in DMSO), and the increasingly yellow coloring of the sample. The latter can be ascribed to the known formation of nitroso and azo-species and lead to an inner filter effect, slowing down the conversion further. From the final NMR, we can conclude that the conversion can be driven to completion, however, the timescales required are rather long, pointing to the possibility of leftover **NO₂-NV** in solution at shorter irradiation times, even at significantly lower concentrations. Figure S31: NMR Spectra of NO₂-NV in CDCl₃ (ca. 1.5 mg/mL) under 365 nm irradiation. ### 3.6. HPLC Trances of the Photochemical Conversion of DEAC-NO₂-NV HPLC-traces of **DEAC-NO₂-NV** before and after irradiation with 430 nm light (ThorLabs 430 nm LED, full power) in a transparent HPLC vial for ca. 30 min (recoded at 220 nm in a gradient of 5 \rightarrow 95% MeCN in water with 0.1% formic acid). Figure S32: HPLC traces of **DEAC-NO₂-NV** before (blue) and after (orange) 430 nm irradiation. #### 4. Computational Chemistry The tetrameric protein TRPV1 was obtained from the crystal structure PDB: 7LPE. Initial docking calculations were performed to identify potential ligand binding poses. Protein and ligand preparation were done using Autodock Tools,⁶ and docking was carried out using Autodock Vina.^{7,8} The binding pocket of a single monomer was used as the docking site, while the entire tetrameric assembly was retained for context. The two poses with the highest docking scores were selected to perform all-atom molecular dynamics (MD) simulations. All simulations were performed with GROMACS 2020.4⁹ using the CHARMM36m forcefield.¹⁰ The lowest-energy pose was placed into the binding pocket of two monomers, while the second-lowest energy pose was positioned in the remaining two monomers. These starting configurations were used to build the full system in CHARMM-GUI,^{11–13} embedding the tetrameric TRPV1 in a 12 × 12 nm² POPC membrane. The system was solvated using TIP3P water and neutralized with 0.15 M NaCl. The system setup is shown in Figure S34. Parameters for the ligands **CAP** and **NO₂-CAP** were obtained from CHARMM-GUI using the CHARMM General Force Field (CGENFF).¹⁴ Energy minimization was performed using 5000 steps of steepest descent. Equilibration was conducted in six steps, gradually releasing position restraints on the protein and the membrane, and increasing the timestep from $\Delta t=1$ fs to 2 fs. The first three steps were run under NVT conditions for 125 ps each using the Berendsen thermostat ($\tau_T=1$ ps), followed by three equilibrations of 500 ps each under NPT conditions using the Berendsen thermostat ($\tau_T=1$ ps) and Berendsen barostat ($\tau_P=5$ ps), maintaining T = 303.15 K and p = 1 bar. Production runs were carried out for 250 ns, with a $\Delta t=2$ fs timestep, and the temperature and pressure were kept with the Nosé-Hoover thermostat and the Parrinello-Rahman barostat ($\tau_P=5$ ps), respectively. Van der Waals interactions were treated with a cutoff scheme (1.2 nm); Coulomb interactions were calculated using PME (1.2 nm), following the recommended settings for the CHARMM force field. For the analysis, the root-mean-square deviation (RMSD) of each ligand was computed relative to its minimized (docked) configuration. To ensure alignment and accurate RMSD measurements, each trajectory was fitted to the protein backbone (Cα atoms) within 5 Å of the ligand in the crystal structure. The selected alignment residues included SER512, MET547, ASN551, LEU553, TYR554, ALA566, and GLU570 from the same monomer as the ligand, and LEU662 from the adjacent chain. Figure S33. Snapshots of the tetrameric protein in each of the monomers (pink, ice blue, gray, dark green), initial minimized structures of the ligands (black) and the last configuration of the 250 ns simulation for **CAP** in blue (top) and **NO₂-CAP** in orange (bottom). The starting configuration of the ligands was pose 1 (dark blue and dark orange) and pose 2 (light blue and light orange). Figure S34. Snapshot of the tetrameric protein (iceblue) embedded in a POPC membrane (tails in light silver and polar heads in ochre). The initial configurations of the ligands from the two simulations are displayed together: **CAP** (blue) and **NO₂-CAP** (orange). #### 5. Biological Assays #### Dissection and culture of dorsal root ganglion (DRG) and dorsal horn spinal neurons Microdot (microisland) plates were prepared as previously described by Burgalossi et al., 2012. To Cortex astrocytes were then plated and maintained at 37°C with 5% CO₂ until neuronal dissection on DIV 2–3. The vertebral body was isolated by removing the skin and muscles, excising the internal organs, and severing it from the torso along both sides of the ribs. The vertebral body was then bisected along the spine, carefully avoiding damage to the spinal cord. Using straight forceps, the nerve fibers were gently detached from the ganglia by sweeping the tip of the forceps between the vertebral wall and spinal cord, from the cervical to the lumbar region. The spinal cord was then extracted by pinching the cervical region with straight forceps and pulling in a quick but careful motion from cervical to lumbar while lifting upwards. Dorsal root ganglia (DRGs) were carefully dissected from the intervertebral foramia using straight forceps. The spinal cord and DRG transferred to a separate dish containing Hanks' Balanced Salt Solution (HBSS), and then the nerve fibers attached to the DRG somata were subsequently removed. The isolated tissues were then incubated in papain solution (Worthington Biochemical Corporation, 25 U/mL) for 1 hour at 37°C with gentle agitation (450 rpm) in a ThermoMixer. This was followed by a 15-minute incubation in a stop solution under the same conditions. After enzymatic digestion, cells were dissociated in Neurobasal–A medium (Thermo Fisher Scientific) supplemented with 2% v/v B-27 supplement (Thermo Fisher Scientific), 2mM Glutamax (Thermo Fisher Scientific), and 0.1 % penicillin/streptomycin. The dissociated neurons were seeded onto astrocyte microisland cultures and maintained in Complete induced dorsal sensory neuron (idSN) Medium. This medium consisted of Basic idSN Medium (96% v/v Neurobasal–A medium, 2mM Glutamax, 2% v/v B-27 supplement, 1% v/v N2 supplement, 0.02 mM β -Mercaptoethanol and 0.1 % penicillin/streptomycin, all from Thermo Fisher Scientific), 0.01 µg/mL BDNF (Cell Guidance Systems, GFH1), 0.01 µg/mL GDNF (Cell Guidance Systems, GFH2), 0.01 µg/mL NT3 (Peprotech, 450-03), 0.01 µg/mL NGF (Peprotech, 450-01), 0.2 mM Ascorbic Acid (Sigma Aldrich, A4544) and 0.1 µg/mL laminin 521 (BioLamina, LN521) at 37°C and 5% CO2. DRG-dorsal horn (DH) co-cultures were established, along with autaptic cultures of DRG neurons. All mice used in the current study were housed in the Max-Planck Institute for Multidisciplinary Sciences Animal Care Facility in Göttingen, and all procedures were approved by the Institutional Animal Care and Use Committee. #### **Electrophysiology**
After breaking the glass coverslip containing autaptic or co-cultured neurons with diamond scriber, the resulting fragments were transferred to a recording chamber filled with extracellular solution (140 mM NaCl, 2.4 mM KCl, 10 mM HEPES, 10 mM glucose monohydrate, 4 mM CaCl₂, 4 mM MgCl₂, 7.4 pH, 320 mOsm). Whole-cell patch-clamp recordings were conducted on cultured neurons in voltage-clamp mode using a MultiClamp 700B amplifier (Molecular Devices), with signals digitized via an Axon Instruments interface (Molecular Devices) at a sampling rate of 10 kHz. For autaptic cultures, neurons were held at -70 mV, and excitatory postsynaptic currents (EPSCs)/inhibitory postsynaptic currents (IPSCs) were evoked by brief depolarization to 0 mV. The internal pipette solution contained (in mM): 136 KCl, 17.8 HEPES, 1 K-EGTA, 0.6 MgCl₂, 4 Mg-ATP, 0.3 Na-GTP, 15 creatine phosphate, and 5 U/mL creatine phosphokinase (pH 7.4, \sim 320 mOsm). Patch pipettes (2.5–4.5 M Ω) were pulled using a Sutter P-2000 horizontal puller. Series resistance was compensated by 35–80%, and only recordings with series resistance <10 M Ω were included in the analysis. In co-culture preparations, the same stimulation protocol was applied to the presynaptic DRG neuron, while the patch pipette for the postsynaptic spinal cord neuron contained QX-314, a blocker of voltage-gated Na⁺ channels, to suppress action potential propagation. This configuration ensured that EPSCs recorded in DH neurons reflected monosynaptic transmission from DRG neurons, not autaptic activity. To further ensure synaptic specificity, recordings were restricted to microislands containing only one presynaptic and one postsynaptic cell. All recordings were performed at DIV 9–16 and data are presented as mean \pm standard error of the mean (SEM). #### Electrophysiological data analysis The analysis of the electrophysiological recordings was performed using AxoGraph X 1.5.4. All recorded traces were preprocessed using 1 kHz filter. Graphs were made using GraphPad Prism. #### **Further Measurements** Figure S33. Functional assessment of NO₂-CAP photosensitivity in a DRG–spinal cord neuron co-culture model. A. Simultaneous dual whole-cell voltage-clamp recordings were performed from DRG and spinal cord neurons co-cultured on a single astrocyte microisland. To prevent action potential firing in the postsynaptic neuron and isolate presynaptic responses from DRG response, QX-314 was included in the spinal cord pipette solution. B and C. Local perfusion of NO₂-CAP induced fast spike currents recorded in both the DRG and the spinal cord neuron, suggesting synaptic transmission without (B) and with (C) illumination with 365 nm light. Figure S33. Functional assessment of NO₂-DHCAP photosensitivity in a DRG-spinal cord neuron co-culture model. A. Simultaneous dual whole-cell voltage-clamp recordings were performed from DRG and spinal cord neurons co-cultured on a single astrocyte microisland. To prevent action potential firing in the postsynaptic neuron and isolate presynaptic responses from DRG response, QX-314 was included in the spinal cord pipette solution. B and C. Local perfusion of NO₂-DHCAP induced fast spike currents recorded in both the DRG and the spinal cord neuron, suggesting synaptic transmission without (B) and with (C) illumination with 365 nm light. # 6. X-Ray Analysis: Structure Tables Crystallized from water:ethanol = 1:1. The data for 1829 p21c were collected from a shockcooled single crystal at 200.00 K on a Bruker D8 VENTURE dual wavelength Mo/Cu fourcircle diffractometer with a microfocus sealed X-ray tube using a mirror optics monochromator and a Bruker PHOTON III detector. The diffractometer was equipped with an Oxford Cryostream 800 low temperature device and used MoK_{α} radiation (λ = 0.71073 Å). All data were integrated with SAINT and a multi-scan absorption correction using SADABS was applied. 16,17 The structure was solved by dual methods using XT and refined by full-matrix least-squares methods against F² by XL. 18,19 All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-bound hydrogen atoms were refined with isotropic displacement parameters. Some were refined freely and some on calculated positions using a riding model with their U_{iso} values constrained to 1.5 times the U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Disordered moieties were refined using bond lengths restraints and displacement parameter restraints. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC (Deposition Number 2451419) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. This report and the CIF file were generated using FinalCif. 21 | Table 1. Crystal data a refinement for 1829_p | | Crystal shape | plate | |---|----------------------|-----------------------------|-----------------------------| | CCDC number | | Radiation | Mo K_α (λ=0.71073 Å) | | Empirical formula | $C_{17}H_{26}N_2O_5$ | 2θ range [°] | 5.16 to 57.47
(0.74 Å) | | Formula weight | 338.40 | Index ranges | -19 ≤ h ≤ 19 | | Temperature [K] | 200.00 | | -13 ≤ k ≤ 13 | | Crystal system | monoclinic | | -19 ≤ I ≤ 19 | | Space group | $P2_{1}/c$ (14) | Reflections collected | 59804 | | (number) | | Independent | 4737 | | a [Å] | 14.3493(17) | reflections | $R_{\text{int}} = 0.0347$ | | <i>b</i> [Å] | 10.0749(9) | | $R_{\text{sigma}} = 0.0152$ | | | · , | Completeness to | 99.6 % | | c [Å] | 14.3067(17) | θ = 25.242° | | | α [°] | 90 | Data / Restraints / | 4737/146/333 | | β [°] | 117.666(3) | Parameters | | | γ [°] | 90 | Goodness-of-fit on F^2 | 1.072 | | Volume [ų] | 1831.8(4) | • | | | Z | 4 | Final <i>R</i> indexes | $R_1 = 0.0482$ | | $oldsymbol{ ho}_{calc}$ [gcm $^{-3}$] | 1.227 | [<i>I</i> ≥2σ(<i>I</i>)] | $wR_2 = 0.1396$ | | | | Final <i>R</i> indexes | $R_1 = 0.0599$ | | μ [mm ⁻¹] | 0.090 | [all data] | $wR_2 = 0.1495$ | | F(000) | 728 | Largest peak/hole | 0.24/-0.22 | | Crystal size [mm³] | 0.349×0.347×0.046 | [eÅ ⁻³] | | | Crystal colour | yellow | | | Table 2. Atomic coordinates and $U_{\rm eq}$ [Å 2] for 1829_p21c | Atom | X | У | Z | U eq | |------|-------------|-------------|-------------|-------------| | O2 | 0.44307(8) | 0.14395(9) | 0.49814(7) | 0.0436(2) | | 01 | 0.59443(9) | 0.26676(10) | 0.65567(7) | 0.0501(3) | | O4 | 0.64236(9) | 0.58422(11) | 0.33383(8) | 0.0599(3) | | O5 | 0.27559(9) | 0.56040(11) | 0.20551(8) | 0.0583(3) | | O3 | 0.70217(10) | 0.63337(11) | 0.49776(9) | 0.0600(3) | | N2 | 0.64837(9) | 0.56362(11) | 0.42117(9) | 0.0441(3) | | N1 | 0.35825(10) | 0.39864(11) | 0.16459(8) | 0.0464(3) | | H1A | 0.350680 | 0.326209 | 0.127349 | 0.056 | | C2 | 0.48778(10) | 0.24581(11) | 0.47163(9) | 0.0366(3) | | C3 | 0.45617(10) | 0.29069(12) | 0.36943(9) | 0.0384(3) | | H3 | 0.398888 | 0.247812 | 0.312607 | 0.046 | | C4 | 0.50551(10) | 0.39634(12) | 0.34736(9) | 0.0372(3) | | C5 | 0.59018(10) | 0.45362(11) | 0.43410(10) | 0.0375(3) | | C1 | 0.57067(10) | 0.30955(12) | 0.55727(9) | 0.0383(3) | | C6 | 0.62221(10) | 0.41232(12) | 0.53750(9) | 0.0388(3) | | H6 | 0.679584 | 0.455086 | 0.594301 | 0.047 | | C7 | 0.46375(11) | 0.44469(13) | 0.23373(10) | 0.0441(3) | | H7A | 0.464241 | 0.542944 | 0.233328 | 0.053 | | H7B | 0.511575 | 0.413703 | 0.205921 | 0.053 | | C9 | 0.27227(12) | 0.46037(14) | 0.15458(10) | 0.0487(3) | | C8 | 0.35676(12) | 0.07574(14) | 0.41548(11) | 0.0493(3) | | H8A | 0.379241 | 0.038368 | 0.365938 | 0.074 | | H8B | 0.298739 | 0.138100 | 0.378107 | 0.074 | | H8C | 0.333158 | 0.004014 | 0.445726 | 0.074 | | C10 | 0.16782(14) | 0.40205(19) | 0.07615(13) | 0.0658(5) | | H10C | 0.178777 | 0.309611 | 0.059891 | 0.079 | | H10D | 0.139766 | 0.453709 | 0.009753 | 0.079 | | H10A | 0.176924 | 0.351635 | 0.021543 | 0.079 | | H10B | 0.116765 | 0.474412 | 0.040753 | 0.079 | | C11 | 0.08727(16) | 0.4029(2) | 0.11812(18) | 0.0671(5) | | H11A | 0.018274 | 0.373614 | 0.061359 | 0.081 | | H11B | 0.079082 | 0.494836 | 0.137650 | 0.081 | | C12 | 0.1191(2) | 0.3122(3) | 0.2148(2) | 0.0912(8) | | H12A | 0.142492 | 0.226007 | 0.199804 | 0.109 | |------|-------------|------------|------------|------------| | H12B | 0.180077 | 0.352695 | 0.275406 | 0.109 | | H12C | 0.196043 | 0.317421 | 0.260582 | 0.109 | | H12D | 0.100821 | 0.219063 | 0.191383 | 0.109 | | C13A | 0.0347(6) | 0.2863(7) | 0.2465(6) | 0.118(2) | | H13A | -0.028328 | 0.250896 | 0.185037 | 0.141 | | H13B | 0.059676 | 0.217701 | 0.302462 | 0.141 | | C16A | -0.0861(4) | 0.3228(6) | 0.3930(5) | 0.0969(14) | | H16A | -0.013924 | 0.349174 | 0.444812 | 0.116 | | H16B | -0.085216 | 0.225995 | 0.381506 | 0.116 | | C15A | -0.1128(6) | 0.3905(9) | 0.2930(6) | 0.123(3) | | H15A | -0.144139 | 0.478495 | 0.291414 | 0.148 | | H15B | -0.163803 | 0.337265 | 0.232827 | 0.148 | | C14A | 0.0043(8) | 0.4079(10) | 0.2862(7) | 0.146(3) | | H14A | -0.002584 | 0.483222 | 0.238995 | 0.175 | | H14B | 0.061294 | 0.429605 | 0.357317 | 0.175 | | C17A | -0.1569(10) | 0.3487(15) | 0.4398(8) | 0.104(3) | | H17A | -0.132339 | 0.299091 | 0.505930 | 0.157 | | H17B | -0.156931 | 0.443846 | 0.453933 | 0.157 | | H17C | -0.228426 | 0.320315 | 0.390446 | 0.157 | | H1 | 0.6378(17) | 0.322(2) | 0.7018(17) | 0.078(6) | | C13B | 0.0588(5) | 0.3577(15) | 0.2796(7) | 0.106(4) | | H13C | 0.090517 | 0.310852 | 0.348246 | 0.128 | | H13D | 0.070899 | 0.453884 | 0.294344 | 0.128 | | C14B | -0.0606(5) | 0.3320(10) | 0.2245(6) | 0.097(2) | | H14C | -0.101730 | 0.409416 | 0.183403 | 0.117 | | H14D | -0.080502 | 0.251731 | 0.179428 | 0.117 | | C15B | -0.0684(8) | 0.3118(9) | 0.3256(8) | 0.112(3) | | H15C | -0.117527 | 0.236688 | 0.312022 | 0.135 | | H15D | 0.001676 | 0.280015 | 0.378627 |
0.135 | | C17B | -0.1656(18) | 0.370(3) | 0.428(2) | 0.161(10) | | H17D | -0.180510 | 0.447936 | 0.460370 | 0.241 | | H17E | -0.231880 | 0.332323 | 0.374788 | 0.241 | | H17F | -0.127755 | 0.303734 | 0.482876 | 0.241 | | C16B | -0.0989(13) | 0.4114(13) | 0.3772(13) | 0.150(5) | | H16D -0.033974 0.452766 0.432224 0.180 C15C -0.0200(10) 0.4091(14) 0.3762(12) 0.075(3) H15E -0.012226 0.506618 0.374359 0.090 H15F 0.015809 0.378606 0.450453 0.090 C11C 0.1252(15) 0.3093(18) 0.1331(16) 0.109(5) H11C 0.066512 0.254928 0.081196 0.130 H11D 0.181450 0.248924 0.181415 0.130 C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.263620 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.035(16) 0.385(3) 0.2053(15) 0.117(6) | H16C | -0.137615 | 0.481223 | 0.324639 | 0.180 | |---|------|-------------|------------|------------|----------| | H15E -0.012226 0.506618 0.374359 0.090 H15F 0.015809 0.378606 0.450453 0.090 C11C 0.1252(15) 0.3093(18) 0.1331(16) 0.109(5) H11C 0.066512 0.254928 0.081196 0.130 H11D 0.181450 0.248924 0.181415 0.130 C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13F -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 <t< td=""><td>H16D</td><td>-0.033974</td><td>0.452766</td><td>0.432224</td><td>0.180</td></t<> | H16D | -0.033974 | 0.452766 | 0.432224 | 0.180 | | H15F 0.015809 0.378606 0.450453 0.090 C11C 0.1252(15) 0.3093(18) 0.1331(16) 0.109(5) H11C 0.066512 0.254928 0.081196 0.130 H11D 0.181450 0.248924 0.181415 0.130 C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) | C15C | -0.0200(10) | 0.4091(14) | 0.3762(12) | 0.075(3) | | C11C 0.1252(15) 0.3093(18) 0.1331(16) 0.109(5) H11C 0.066512 0.254928 0.081196 0.130 H11D 0.181450 0.248924 0.181415 0.130 C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 | H15E | -0.012226 | 0.506618 | 0.374359 | 0.090 | | H11C 0.066512 0.254928 0.081196 0.130 H11D 0.181450 0.248924 0.181415 0.130 C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.341185 0.352883 0.103 H14E 0.100102 0.341185 0.352883 0.103 H14F 0.00460 0.245941 0.305681 0.103 C17C <td>H15F</td> <td>0.015809</td> <td>0.378606</td> <td>0.450453</td> <td>0.090</td> | H15F | 0.015809 | 0.378606 | 0.450453 | 0.090 | | H11D 0.181450 0.248924 0.181415 0.130 C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.3527990 0.365851 0.130 < | C11C | 0.1252(15) | 0.3093(18) | 0.1331(16) | 0.109(5) | | C12C 0.0896(15) 0.391(2) 0.1910(14) 0.097(5) H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 | H11C | 0.066512 | 0.254928 | 0.081196 | 0.130 | | H12E 0.088098 0.481514 0.163303 0.116 H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17H -0.137674 0.286768 0.452997 0.130 | H11D | 0.181450 | 0.248924 | 0.181415 | 0.130 | | H12F 0.148602 0.391056 0.263620 0.116 C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | C12C | 0.0896(15) | 0.391(2) | 0.1910(14) | 0.097(5) | | C16C -0.1401(12) 0.367(2) 0.3197(19) 0.085(6) H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H12E | 0.088098 | 0.481514 | 0.163303 | 0.116 | | H16E -0.182265 0.434106 0.266360 0.102 H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H12F | 0.148602 | 0.391056 | 0.263620 | 0.116 | | H16F -0.148254 0.280774 0.283149 0.102 C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | C16C | -0.1401(12) | 0.367(2) | 0.3197(19) | 0.085(6) | | C13C -0.0035(16) 0.385(3) 0.2053(15) 0.117(6) H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H16E | -0.182265 | 0.434106 | 0.266360 | 0.102 | | H13E -0.054793 0.322766 0.152969 0.140 H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H16F | -0.148254 | 0.280774 | 0.283149 | 0.102 | | H13F -0.036469 0.473606 0.193063 0.140 C14C 0.0224(15) 0.3400(17) 0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | C13C | -0.0035(16) | 0.385(3) | 0.2053(15) | 0.117(6) | | C14C 0.0224(15) 0.3400(17)
0.3114(14) 0.086(5) H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H13E | -0.054793 | 0.322766 | 0.152969 | 0.140 | | H14E 0.100102 0.341185 0.352883 0.103 H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H13F | -0.036469 | 0.473606 | 0.193063 | 0.140 | | H14F 0.000460 0.245941 0.305681 0.103 C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | C14C | 0.0224(15) | 0.3400(17) | 0.3114(14) | 0.086(5) | | C17C -0.179(3) 0.354(3) 0.401(3) 0.086(7) H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H14E | 0.100102 | 0.341185 | 0.352883 | 0.103 | | H17G -0.253375 0.327990 0.365851 0.130 H17H -0.137674 0.286768 0.452997 0.130 | H14F | 0.000460 | 0.245941 | 0.305681 | 0.103 | | H17H -0.137674 0.286768 0.452997 0.130 | C17C | -0.179(3) | 0.354(3) | 0.401(3) | 0.086(7) | | | H17G | -0.253375 | 0.327990 | 0.365851 | 0.130 | | H17I -0.171604 0.439730 0.436248 0.130 | H17H | -0.137674 | 0.286768 | 0.452997 | 0.130 | | | H17I | -0.171604 | 0.439730 | 0.436248 | 0.130 | $U_{\rm eq}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor. Table 3. Anisotropic displacement parameters [Ų] for 1829_p21c. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\ h^2(a^*)^2U_{11} + k^2(b^*)^2U_{22} + ... + 2hka^*b^*U_{12}\]$ | Atom | U ₁₁ | U ₂₂ | U ₃₃ | U ₂₃ | U ₁₃ | U ₁₂ | |------|------------------------|-----------------|------------------------|------------------------|------------------------|------------------------| | O2 | 0.0585(5) | 0.0375(5) | 0.0345(4) | -0.0014(3) | 0.0212(4) | -0.0063(4) | | 01 | 0.0711(7) | 0.0455(5) | 0.0290(4) | -0.0001(4) | 0.0193(4) | -0.0097(5) | | O4 | 0.0698(7) | 0.0613(7) | 0.0495(6) | 0.0174(5) | 0.0284(5) | -0.0037(5) | | O5 | 0.0592(6) | 0.0536(6) | 0.0501(6) | -0.0161(5) | 0.0153(5) | 0.0063(5) | | О3 | 0.0747(7) | 0.0479(6) | 0.0634(7) | -0.0095(5) | 0.0372(6) | -0.0149(5) | | N2 | 0.0508(6) | 0.0352(5) | 0.0490(6) | 0.0049(5) | 0.0253(5) | 0.0050(4) | |------|------------|------------|------------|------------|------------|-------------| | N1 | 0.0639(7) | 0.0390(6) | 0.0306(5) | -0.0013(4) | 0.0170(5) | 0.0082(5) | | C2 | 0.0488(7) | 0.0304(5) | 0.0332(6) | -0.0008(4) | 0.0213(5) | 0.0034(5) | | C3 | 0.0492(7) | 0.0350(6) | 0.0303(5) | -0.0026(4) | 0.0177(5) | 0.0039(5) | | C4 | 0.0488(6) | 0.0334(6) | 0.0317(5) | 0.0014(4) | 0.0207(5) | 0.0094(5) | | C5 | 0.0469(6) | 0.0308(5) | 0.0386(6) | 0.0020(4) | 0.0231(5) | 0.0060(5) | | C1 | 0.0517(7) | 0.0338(6) | 0.0300(6) | 0.0002(4) | 0.0197(5) | 0.0051(5) | | C6 | 0.0466(6) | 0.0347(6) | 0.0338(6) | -0.0020(5) | 0.0176(5) | 0.0028(5) | | C7 | 0.0589(8) | 0.0422(7) | 0.0329(6) | 0.0055(5) | 0.0227(6) | 0.0084(6) | | C9 | 0.0606(8) | 0.0430(7) | 0.0318(6) | -0.0008(5) | 0.0124(6) | 0.0068(6) | | C8 | 0.0600(8) | 0.0443(7) | 0.0420(7) | -0.0048(5) | 0.0223(6) | -0.0096(6) | | C10 | 0.0637(10) | 0.0625(10) | 0.0460(8) | -0.0108(7) | 0.0041(7) | 0.0048(7) | | C11 | 0.0561(10) | 0.0561(11) | 0.0639(12) | 0.0006(9) | 0.0066(9) | 0.0029(8) | | C12 | 0.0837(17) | 0.0792(17) | 0.0843(18) | 0.0225(14) | 0.0167(13) | -0.0078(14) | | C13A | 0.109(5) | 0.124(5) | 0.101(4) | 0.015(4) | 0.032(4) | -0.049(4) | | C16A | 0.088(3) | 0.076(3) | 0.123(4) | 0.006(3) | 0.046(3) | 0.028(2) | | C15A | 0.117(5) | 0.131(6) | 0.138(6) | 0.034(5) | 0.074(5) | 0.060(4) | | C14A | 0.171(8) | 0.163(7) | 0.122(6) | 0.022(5) | 0.083(6) | -0.004(7) | | C17A | 0.100(6) | 0.107(6) | 0.099(5) | 0.000(4) | 0.039(4) | 0.048(5) | | C13B | 0.053(4) | 0.174(11) | 0.069(5) | 0.051(6) | 0.008(3) | -0.030(5) | | C14B | 0.066(4) | 0.120(6) | 0.082(4) | 0.014(4) | 0.013(3) | -0.025(4) | | C15B | 0.125(7) | 0.092(6) | 0.146(8) | 0.054(6) | 0.085(7) | 0.035(6) | | C17B | 0.050(7) | 0.19(2) | 0.22(2) | -0.005(14) | 0.045(10) | 0.017(10) | | C16B | 0.128(10) | 0.087(7) | 0.243(17) | 0.008(9) | 0.092(12) | 0.025(7) | | C15C | 0.063(6) | 0.049(7) | 0.092(8) | -0.017(6) | 0.019(6) | 0.000(5) | | C11C | 0.116(13) | 0.113(10) | 0.082(10) | -0.005(8) | 0.032(9) | -0.028(9) | | C12C | 0.097(10) | 0.103(12) | 0.070(10) | 0.005(9) | 0.022(8) | -0.027(9) | | C16C | 0.068(7) | 0.065(10) | 0.100(12) | -0.047(10) | 0.021(7) | -0.010(7) | | C13C | 0.112(11) | 0.120(17) | 0.111(10) | 0.024(10) | 0.046(9) | -0.019(10) | | C14C | 0.103(11) | 0.049(8) | 0.100(10) | 0.006(7) | 0.042(9) | 0.026(8) | | C17C | 0.078(15) | 0.050(10) | 0.124(17) | -0.045(12) | 0.040(13) | -0.013(10) | | | | | | | | | | | | | | | | | Table 4. Bond lengths and angles for 1829_p21c | Atom-Atom | Length [Å] | |-----------|------------| | O2-C2 | 1.3545(15) | | O2-C8 | 1.4299(16) | | O1-C1 | 1.3558(14) | | O1–H1 | 0.87(2) | | O4-N2 | 1.2296(15) | | O5-C9 | 1.2314(17) | | O3-N2 | 1.2268(16) | | N2-C5 | 1.4502(16) | | N1–H1A | 0.8800 | | N1-C7 | 1.4473(19) | | N1-C9 | 1.3288(19) | | C2-C3 | 1.3900(16) | | C2-C1 | 1.4053(17) | | C3-H3 | 0.9500 | | C3-C4 | 1.3933(18) | | C4-C5 | 1.3961(18) | | C4-C7 | 1.5280(16) | | C5-C6 | 1.3933(17) | | C1–C6 | 1.3760(18) | | C6-H6 | 0.9500 | | C7–H7A | 0.9900 | | C7–H7B | 0.9900 | | C9-C10 | 1.513(2) | | C8-H8A | 0.9800 | | C8-H8B | 0.9800 | | C8-H8C | 0.9800 | | C10-H10C | 0.9900 | | C10-H10D | 0.9900 | | C10-H10A | 0.9900 | | C10-H10B | 0.9900 | | C10-C11 | 1.530(3) | | C10-C11C | 1.541(14) | | C11-H11A | 0.9900 | | C11-C12 1.539(3) C12-H12A 0.9900 C12-H12B 0.9900 C12-H12C 0.9900 C12-H12D 0.9900 C12-C13A 1.501(7) C12-C13B 1.600(11) C13A-H13A 0.9900 C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13C 0.9900 C14B-H14C 0.9900 C14B-H14D 0.9900 C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17E 0.9800 | C11-H11B | 0.9900 | |--|-----------|-----------| | C12–H12A 0.9900 C12–H12B 0.9900 C12–H12C 0.9900 C12–H12D 0.9900 C12–C13A 1.501(7) C12–C13B 1.600(11) C13A–H13A 0.9900 C13A–C14A 1.497(10) C16A–H16A 0.9900 C16A–H16B 0.9900 C16A–C15A 1.466(8) C16A–C17A 1.476(9) C15A–H15A 0.9900 C15A–H15B 0.9900 C15A–C14A 1.736(10) C14A–H14B 0.9900 C17A–H17A 0.9800 C17A–H17B 0.9800 C13B–H13C 0.9900 C13B–H13D 0.9900 C14B–H14C 0.9900 C14B–H14D 0.9900 C15B–H15C 0.9900 C15B–H15D 0.9900 C15B–C16B 1.430(12) C17B–H17D 0.9800 | | | | C12-H12B 0.9900 C12-H12C 0.9900 C12-H12D 0.9900 C12-C13A 1.501(7) C12-C13B 1.600(11) C13A-H13A 0.9900 C13A-H13B 0.9900 C13A-C14A 1.497(10) C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15B 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C14B-H14C 0.9900 C14B-H14D 0.9900 C15B-H15D 0.9900 C15B-H15D 0.9900 C15B-H17D 0.9800 | | ` ' | | C12–H12C 0.9900 C12–H12D 0.9900 C12–C13A 1.501(7) C12–C13B 1.600(11) C13A–H13A 0.9900 C13A–H13B 0.9900 C13A–C14A 1.497(10) C16A–H16A 0.9900 C16A–H16B 0.9900 C16A–C15A 1.466(8) C16A–C17A 1.476(9) C15A–H15B 0.9900 C15A–C14A 1.736(10) C14A–H14B 0.9900 C17A–H17A 0.9800 C17A–H17B 0.9800 C13B–H13C 0.9900 C13B–H13D 0.9900 C13B–C14B 1.541(9) C14B–H14C 0.9900 C14B–H14D 0.9900 C15B–H15D 0.9900 C15B–H15D 0.9900 C15B–C16B 1.430(12) C17B–H17D 0.9800 | | | | C12-H12D 0.9900 C12-C13A 1.501(7) C12-C13B 1.600(11) C13A-H13A 0.9900 C13A-H13B 0.9900 C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15B 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15D 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C12-C13A 1.501(7) C12-C13B 1.600(11) C13A-H13A 0.9900 C13A-H13B 0.9900 C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15B 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15D 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C12-C13B 1.600(11) C13A-H13A 0.9900 C13A-H13B 0.9900 C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C13A-H13A 0.9900 C13A-H13B 0.9900 C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D
0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | ` ' | | C13A-H13B 0.9900 C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | , , | | C13A-C14A 1.497(10) C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15D 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C16A-H16A 0.9900 C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-H14C 0.9900 C14B-H14D 0.9900 C14B-H14D 0.9900 C14B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C16A-H16B 0.9900 C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14A 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15D 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | ` , | | C16A-C15A 1.466(8) C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14A 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C16A-C17A 1.476(9) C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14A 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C15A-H15A 0.9900 C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14A 0.9900 C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C15A-H15B 0.9900 C15A-C14A 1.736(10) C14A-H14A 0.9900 C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | ` ′ | | C15A-C14A 1.736(10) C14A-H14A 0.9900 C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C14A-H14A 0.9900 C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | | | C14A-H14B 0.9900 C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | ` ' | | C17A-H17A 0.9800 C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | | 0.9900 | | C17A-H17B 0.9800 C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C14A-H14B | 0.9900 | | C17A-H17C 0.9800 C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C17A-H17A | 0.9800 | | C13B-H13C 0.9900 C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C17A-H17B | 0.9800 | | C13B-H13D 0.9900 C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C17A-H17C | 0.9800 | | C13B-C14B 1.541(9) C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C13B-H13C | 0.9900 | | C14B-H14C 0.9900 C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C13B-H13D | 0.9900 | | C14B-H14D 0.9900 C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C13B-C14B | 1.541(9) | | C14B-C15B 1.515(10) C15B-H15C 0.9900 C15B-H15D 0.9900 C15B-C16B 1.430(12) C17B-H17D 0.9800 | C14B-H14C | 0.9900 | | C15B-H15C 0.9900
C15B-H15D 0.9900
C15B-C16B 1.430(12)
C17B-H17D 0.9800 | C14B-H14D | 0.9900 | | C15B-H15D 0.9900
C15B-C16B 1.430(12)
C17B-H17D 0.9800 | C14B-C15B | 1.515(10) | | C15B-C16B 1.430(12)
C17B-H17D 0.9800 | C15B-H15C | 0.9900 | | C17B-H17D 0.9800 | C15B-H15D | 0.9900 | | | C15B-C16B | 1.430(12) | | C17B-H17E 0.9800 | C17B-H17D | 0.9800 | | | C17B-H17E | 0.9800 | | C17B-H17F | 0.9800 | |--------------|------------| | C17B-C16B | 1.507(16) | | C16B-H16C | 0.9900 | | C16B-H16D | 0.9900 | | C15C-H15E | 0.9900 | | C15C-H15F | 0.9900 | | C15C-C16C | 1.586(15) | | C15C-C14C | 1.496(14) | | C11C-H11C | 0.9900 | | C11C-H11D | 0.9900 | | C11C-C12C | 1.421(16) | | C12C-H12E | 0.9900 | | C12C-H12F | 0.9900 | | C12C-C13C | 1.443(16) | | C16C-H16E | 0.9900 | | C16C-H16F | 0.9900 | | C16C-C17C | 1.509(18) | | C13C-H13E | 0.9900 | | C13C-H13F | 0.9900 | | C13C-C14C | 1.457(16) | | C14C-H14E | 0.9900 | | C14C-H14F | 0.9900 | | C17C-H17G | 0.9800 | | C17C-H17H | 0.9800 | | C17C-H17I | 0.9800 | | Atom-Atom- | Angle [°] | | Atom | Angle | | C2-O2-C8 | 118.26(10) | | C1-O1-H1 | 109.4(14) | | O4-N2-C5 | 119.06(12) | | O3-N2-O4 | 121.95(12) | | O3-N2-C5 | 118.99(11) | | C7-N1-H1A | 118.4 | | C9-N1-H1A | 118.4 | | 30 111 111/1 | 113.1 | | O2-C2-C3 125.13(11) O2-C2-C1 114.91(10) C3-C2-C1 119.95(11) C2-C3-H3 118.8 C2-C3-C4 122.33(11) C4-C3-H3 118.8 C3-C4-C5 116.01(11) C3-C4-C7 119.67(11) C5-C4-C7 124.29(11) C4-C5-N2 121.17(11) C6-C5-N2 115.98(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) C1-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 116.65(13) O2-C8-H8B 109.5 H8A-C8-H8C 109.5 H8A-C8-H8C 109.5 H8B-C8-H8C 109.5 | C9-N1-C7 | 123.22(11) | |---|-------------|------------| | C3-C2-C1 119.95(11) C2-C3-H3 118.8 C2-C3-C4 122.33(11) C4-C3-H3 118.8 C3-C4-C5 116.01(11) C3-C4-C7 124.29(11) C5-C4-C7 124.29(11) C6-C5-N2 121.17(11) C6-C5-N2 115.98(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 C4-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8C 109.5 | O2-C2-C3 | 125.13(11) | | C2-C3-H3 118.8 C2-C3-C4 122.33(11) C4-C3-H3 118.8 C3-C4-C5 116.01(11) C3-C4-C7 119.67(11) C5-C4-C7 124.29(11) C4-C5-N2 121.17(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 H8A-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | O2-C2-C1 | 114.91(10) | | C2-C3-C4 122.33(11) C4-C3-H3 118.8 C3-C4-C5 116.01(11) C3-C4-C7 119.67(11) C5-C4-C7 124.29(11) C4-C5-N2 121.17(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 C4-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C3-C2-C1 | 119.95(11) | | C4-C3-H3 118.8 C3-C4-C5 116.01(11) C3-C4-C7 119.67(11) C5-C4-C7 124.29(11) C4-C5-N2 121.17(11) C6-C5-N2 115.98(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-H7A 108.9 N1-C7-H7B 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8C 109.5 H8A-C8-H8C 109.5 | C2-C3-H3 |
118.8 | | C3-C4-C5 116.01(11) C3-C4-C7 119.67(11) C5-C4-C7 124.29(11) C4-C5-N2 121.17(11) C6-C5-N2 115.98(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8C 109.5 H8A-C8-H8C 109.5 | C2-C3-C4 | 122.33(11) | | C3-C4-C7 | C4-C3-H3 | 118.8 | | C5-C4-C7 | C3-C4-C5 | 116.01(11) | | C4-C5-N2 121.17(11) C6-C5-N2 115.98(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C3-C4-C7 | 119.67(11) | | C6-C5-N2 115.98(11) C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 C4-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8B 109.5 | C5-C4-C7 | 124.29(11) | | C6-C5-C4 122.83(11) O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 C4-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C4-C5-N2 | 121.17(11) | | O1-C1-C2 117.58(11) O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C6-C5-N2 | 115.98(11) | | O1-C1-C6 123.55(11) C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C6-C5-C4 | 122.83(11) | | C6-C1-C2 118.87(11) C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | O1-C1-C2 | 117.58(11) | | C5-C6-H6 120.0 C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | O1-C1-C6 | 123.55(11) | | C1-C6-C5 119.94(11) C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C6-C1-C2 | 118.87(11) | | C1-C6-H6 120.0 N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C5-C6-H6 | 120.0 | | N1-C7-C4 113.20(11) N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8B 109.5 | C1-C6-C5 | 119.94(11) | | N1-C7-H7A 108.9 N1-C7-H7B 108.9 C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C1-C6-H6 | 120.0 | | N1-C7-H7B 108.9 C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 H8A-C8-H8B 109.5 H8A-C8-H8B 109.5 | N1-C7-C4 | 113.20(11) | | C4-C7-H7A 108.9 C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | N1-C7-H7A | 108.9 | | C4-C7-H7B 108.9 H7A-C7-H7B 107.8 O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | N1-C7-H7B | 108.9 | | H7A-C7-H7B107.8O5-C9-N1122.71(14)O5-C9-C10120.64(14)N1-C9-C10116.65(13)O2-C8-H8A109.5O2-C8-H8B109.5O2-C8-H8C109.5H8A-C8-H8B109.5H8A-C8-H8B109.5 | C4-C7-H7A | 108.9 | | O5-C9-N1 122.71(14) O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | C4-C7-H7B | 108.9 | | O5-C9-C10 120.64(14) N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | H7A-C7-H7B | 107.8 | | N1-C9-C10 116.65(13) O2-C8-H8A 109.5 O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | O5-C9-N1 | 122.71(14) | | O2-C8-H8A 109.5 O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | O5-C9-C10 | 120.64(14) | | O2-C8-H8B 109.5 O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | N1-C9-C10 | 116.65(13) | | O2-C8-H8C 109.5 H8A-C8-H8B 109.5 H8A-C8-H8C 109.5 | O2-C8-H8A | 109.5 | | H8A-C8-H8B 109.5
H8A-C8-H8C 109.5 | O2-C8-H8B | 109.5 | | H8A-C8-H8C 109.5 | O2-C8-H8C | 109.5 | | | H8A-C8-H8B | 109.5 | | H8B-C8-H8C 109.5 | H8A-C8-H8C | 109.5 | | 1 I | H8B-C8-H8C | 109.5 | | C9-C10-H10C 109.2 | C9-C10-H10C | 109.2 | | C9-C10-H10A 109.7 C9-C10-H10B 109.7 C9-C10-C11 112.05(14) C9-C10-C11C 110.1(8) H10C-C10-H10D 107.9 H10A-C10-H10B 108.2 C11-C10-H10C 109.2 C11-C10-H10D 109.2 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-H11B 107.8 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12B 109.7 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12D 108.2 C13A-C12-H12D 108.2 C13A-C12-H12D 108.4 C13A-C12-H12D 109.7 C13B-C12-H12D 109.7 C13B-C12-H12D 109.7 C13B-C12-H12D 109.7 C12-C13A-H13B 109.0 C12-C13A-H13B 109.0 | C9-C10-H10D | 109.2 | |---|---------------|------------| | C9-C10-C11 112.05(14) C9-C10-C11C 110.1(8) H10C-C10-H10D 107.9 H10A-C10-H10B 108.2 C11-C10-H10C 109.2 C11-C10-H10D 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 109.7 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12D 108.4 C13A-C12-H12A 108.4 C13A-C12-H12B 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B | C9-C10-H10A | 109.7 | | C9-C10-C11C 110.1(8) H10C-C10-H10D 107.9 H10A-C10-H10B 108.2 C11-C10-H10C 109.2 C11-C10-H10D 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12A-C12-H12B 108.4 C13A-C12-H12D 108.4 C13A-C12-H12A 108.4 C13A-C12-H12B 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C9-C10-H10B | 109.7 | | H10C-C10-H10D 107.9 H10A-C10-H10B 108.2 C11-C10-H10C 109.2 C11-C10-H10D 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-H11B 107.8 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12A-C12-H12B 108.2 C13A-C12-H12D 108.2 C13A-C12-H12D 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C12-C13A-H13B 109.0 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13B 107.8 | C9-C10-C11 | 112.05(14) | | H10A-C10-H10B 108.2 C11-C10-H10C 109.2 C11-C10-H10D 109.2 C11C-C10-H10A 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12A-C12-H12B 108.2 C13A-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C9-C10-C11C | 110.1(8) | | C11-C10-H10C 109.2 C11-C10-H10D 109.2 C11C-C10-H10A 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 109.7 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12D 108.4 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C
109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | H10C-C10-H10D | 107.9 | | C11-C10-H10D 109.2 C11C-C10-H10A 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-C12 112.72(19) H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C12-C11-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12D 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | H10A-C10-H10B | 108.2 | | C11C-C10-H10A 109.7 C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-C12 112.72(19) H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12C-C12-H12B 108.2 C13A-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 H13A-C13A-H13B 109.0 H13A-C13A-H13B 107.8 H13B 107.8 | C11-C10-H10C | 109.2 | | C11C-C10-H10B 109.7 C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-C12 112.72(19) H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12D 109.7 C11-C12-H12D 109.7 C11-C12-H12B 107.5 H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12D 108.4 C13A-C12-H12A 108.4 C13B-C12-H12B 109.7 C13B-C12-H12D 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 H13A-C13A-H13B 109.0 H13A-C13A-H13B 107.8 H13B 107.8 | C11-C10-H10D | 109.2 | | C10-C11-H11A 109.0 C10-C11-H11B 109.0 C10-C11-C12 112.72(19) H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13B-C12-H12B 108.4 C13B-C12-H12D 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C11C-C10-H10A | 109.7 | | C10-C11-H11B 109.0 C10-C11-C12 112.72(19) H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12A 108.4 C13B-C12-H12B 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A-H13B 107.8 H13B 107.8 | C11C-C10-H10B | 109.7 | | C10-C11-C12 112.72(19) H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13B-C12-H12B 108.4 C13B-C12-H12D 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 H13A-C13A-H13B 109.0 H13B 107.8 | C10-C11-H11A | 109.0 | | H11A-C11-H11B 107.8 C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12D 108.2 C13A-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12B 109.7 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B | C10-C11-H11B | 109.0 | | C12-C11-H11A 109.0 C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C10-C11-C12 | 112.72(19) | | C12-C11-H11B 109.0 C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | H11A-C11-H11B | 107.8 | | C11-C12-H12A 108.4 C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-H12D 108.2 C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C12-C11-H11A | 109.0 | | C11-C12-H12B 108.4 C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C12-C11-H11B | 109.0 | | C11-C12-H12C 109.7 C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 H13A-C13A- 107.8 H13B 107.8 | C11-C12-H12A | 108.4 | | C11-C12-H12D 109.7 C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C11-C12-H12B | 108.4 | | C11-C12-C13B 109.6(4) H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B 107.8 | C11-C12-H12C | 109.7 | | H12A-C12-H12B 107.5 H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B | C11-C12-H12D | 109.7 | | H12C-C12-H12D 108.2 C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B | C11-C12-C13B | 109.6(4) | | C13A-C12-C11 115.5(4) C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B | H12A-C12-H12B | 107.5 | | C13A-C12-H12A 108.4 C13A-C12-H12B 108.4 C13B-C12-H12C 109.7 C13B-C12-H12D 109.7 C12-C13A-H13A 109.0 C12-C13A-H13B 109.0 H13A-C13A- 107.8 H13B | H12C-C12-H12D | 108.2 | | C13A-C12-H12B 108.4
C13B-C12-H12C 109.7
C13B-C12-H12D 109.7
C12-C13A-H13A 109.0
C12-C13A-H13B 109.0
H13A-C13A- 107.8
H13B | C13A-C12-C11 | 115.5(4) | | C13B-C12-H12C 109.7
C13B-C12-H12D 109.7
C12-C13A-H13A 109.0
C12-C13A-H13B 109.0
H13A-C13A- 107.8
H13B | C13A-C12-H12A | 108.4 | | C13B-C12-H12D 109.7
C12-C13A-H13A 109.0
C12-C13A-H13B 109.0
H13A-C13A- 107.8
H13B | C13A-C12-H12B | 108.4 | | C12-C13A-H13A 109.0
C12-C13A-H13B 109.0
H13A-C13A- 107.8
H13B | C13B-C12-H12C | 109.7 | | C12-C13A-H13B 109.0
H13A-C13A- 107.8
H13B | C13B-C12-H12D | 109.7 | | H13A-C13A- 107.8
H13B | C12-C13A-H13A | 109.0 | | H13B | C12-C13A-H13B | 109.0 | | | H13A-C13A- | 107.8 | | C14A-C13A-C12 113.0(6) | H13B | | | j | C14A-C13A-C12 | 113.0(6) | | C14A-C13A- | 109.0 | |------------|----------| | H13A | | | C14A-C13A- | 109.0 | | H13B | | | H16A-C16A- | 107.4 | | H16B | | | C15A-C16A- | 108.3 | | H16A | | | C15A-C16A- | 108.3 | | H16B | | | C15A-C16A- | 115.9(6) | | C17A | | | C17A-C16A- | 108.3 | | H16A | | | C17A-C16A- | 108.3 | | H16B | | | C16A-C15A- | 110.5 | | H15A | | | C16A-C15A- | 110.5 | | H15B | | | C16A-C15A- | 106.3(6) | | C14A | | | H15A-C15A- | 108.7 | | H15B | | | C14A-C15A- | 110.5 | | H15A | | | C14A-C15A- | 110.5 | | H15B | | | C13A-C14A- | 113.5(7) | | C15A | | | C13A-C14A- | 108.9 | | H14A | | | C13A-C14A- | 108.9 | | H14B | | | C15A-C14A- | 108.9 | | H14A | | | | | | H14B
H14A-C14A- 107.7
H14B | |----------------------------------| | | | H14B | | טדווו | | C16A-C17A- 109.5 | | H17A | | C16A-C17A- 109.5 | | H17B | | C16A-C17A- 109.5 | | H17C | | H17A-C17A- 109.5 | | H17B | | H17A-C17A- 109.5 | | H17C | | H17B-C17A- 109.5 | | H17C | | C12-C13B-H13C 108.4 | | C12-C13B-H13D 108.4 | | H13C-C13B- 107.5 | | H13D | | C14B-C13B-C12 115.3(8) | | C14B-C13B- 108.4 | | H13C | | C14B-C13B- 108.4 | | H13D | | C13B-C14B- 112.7 | | H14C | | C13B-C14B- 112.7 | | H14D | | H14C-C14B- 110.2 | | H14D | | C15B-C14B- 95.3(6) | | C13B | | C15B-C14B- 112.7 | | 1 | | C15B-C14B- | 112.7 | |------------|-----------| | H14D | | | C14B-C15B- | 106.1 | | H15C | | | C14B-C15B- | 106.1 | | H15D | | | H15C-C15B- | 106.3 | | H15D | | | C16B-C15B- | 125.0(9) | | C14B | | | C16B-C15B- | 106.1 | | H15C | | | C16B-C15B- | 106.1 | | H15D | | | H17D-C17B- | 109.5 | | H17E | | | H17D-C17B- | 109.5 | | H17F | | | H17E-C17B- | 109.5 | | H17F | | | C16B-C17B- | 109.5 | | H17D | | | C16B-C17B- | 109.5 | | H17E | | | C16B-C17B- | 109.5 | | H17F | | | C15B-C16B- | 118.2(13) | | C17B | | | C15B-C16B- | 107.8 | | H16C | | | C15B-C16B- | 107.8 | | H16D | | | C17B-C16B- | 107.8 | | H16C | | | C17B-C16B- | 107.8 | | H16D | | | H16D H15E-C15C- H15F C16C-C15C- H15E C16C-C15C- H15E C16C-C15C- H15F C14C-C15C- H15F C14C-C15C- H15E C14C-C15C- H15E C14C-C15C- H15E C14C-C15C- H15E C14C-C15C- H10.3 H10-C11C-H11C C10-C11C-H11D C12C-C11C- H10.3 H11C H11D C11C-C12C- H12E C11C-C12C- H12F C13C-C12C- H12F C13C-C12C- H12F C13C-C12C- H04.3 H12E C13C-C12C- H04.3 H12E C13C-C12C- H04.3 H12E C13C-C12C- H04.3 H12E C13C-C12C- H04.3 H12F | H16C-C16B- | 107.1 | |--|---------------|-----------| | H15F
C16C-C15C- 111.3 H15E 111.3 C16C-C15C- 111.3 H15F 111.3 C14C-C15C- 111.3 H15E 102.6(11) C14C-C15C- 102.6(11) C16C 102.6(11) C10-C11C-H11C 110.3 H11C-C11C- 108.5 H11D 110.3 C12C-C11C- 110.3 H11C 110.3 H11C 110.3 H11D 104.3 H12E 104.3 H12F 104.3 H12F 105.6 H12F 105.6 H12F 104.3 H12E 104.3 H12E 104.3 H12E 104.3 | H16D | | | C16C-C15C- 111.3 H15E C16C-C15C- 111.3 H15F C14C-C15C- 111.3 H15E C14C-C15C- 111.3 H15F C14C-C15C- 102.6(11) C16C C10-C11C-H11C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D C12C-C11C-C10 107.1(13) C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11C C12C-C11C- 104.3 H12E C11C-C12C- 104.3 H12F C13C-C12C- 104.3 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 H12E C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H15E-C15C- | 109.2 | | H15E C16C-C15C- 111.3 H15F 111.3 C14C-C15C- 111.3 H15E 111.3 C14C-C15C- 102.6(11) C16C 102.6(11) C10-C11C-H11C 110.3 H11C-C11C- 108.5 H11D 110.3 C12C-C11C- 110.3 H11C 110.3 C12C-C11C- 110.3 H11D 110.3 C11C-C12C- 104.3 H12E 104.3 H12F 105.6 H12F 105.6 H12F 104.3 H12E 104.3 H12E 104.3 H12E 104.3 | H15F | | | C16C-C15C- 111.3 H15F C14C-C15C- 111.3 H15E C14C-C15C- 111.3 H15F C14C-C15C- 102.6(11) C16C C10-C11C-H11C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11C C12C-C11C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 H12E C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C16C-C15C- | 111.3 | | H15F C14C-C15C- 111.3 H15E C14C-C15C- 111.3 H15F C14C-C15C- 102.6(11) C16C C10-C11C-H11C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 H12E C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H15E | | | C14C-C15C- 111.3 H15E 111.3 C14C-C15C- 111.3 H15F 102.6(11) C16C 102.6(11) C10-C11C-H11C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D 110.3 C12C-C11C- 110.3 H11C 110.3 H11D 110.3 H11D 104.3 H12E 104.3 H12F 104.3 H12F 105.6 H12F 105.6 H12F 104.3 H12E 104.3 H12E 104.3 H12E 104.3 | C16C-C15C- | 111.3 | | H15E C14C-C15C- H15F C14C-C15C- C16C C10-C11C-H11C C10-C11C-H11D H11C-C11C- H11D C12C-C11C-C10 C12C-C11C- H11C C12C-C11C- H11D C12C-C11C- H10.3 H11C C12C-C11C- H10.3 H11C C12C-C11C- H10.3 H11D C11C-C12C- H12E C11C-C12C- H12F C13C-C12C- H12E H14.3 | H15F | | | C14C-C15C- 111.3 H15F 102.6(11) C14C-C15C- 102.6(11) C16C 110.3 C10-C11C-H11C 110.3 H11C-C11C- 108.5 H11D 110.3 C12C-C11C- 110.3 H11C 110.3 H11D 110.3 H11D 104.3 H12E 104.3 H12F 131.6(17) C13C 105.6 H12F 104.3 H12F 104.3 H12E 104.3 H12E 104.3 H12E 104.3 | C14C-C15C- | 111.3 | | H15F C14C-C15C- 102.6(11) C16C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D 110.3 C12C-C11C-C10 107.1(13) C12C-C11C- 110.3 H11C 110.3 H11D 110.3 H11D 104.3 H12E 104.3 H12F 104.3 H12F 105.6 H12F 104.3 H12F 104.3 H12E 104.3 H12E 104.3 | H15E | | | C14C-C15C- 102.6(11) C16C 100-C11C-H11C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D 110.3 C12C-C11C- 110.3 H11C 110.3 C12C-C11C- 110.3 H11D 110.3 C11C-C12C- 104.3 H12E 104.3 C11C-C12C- 104.3 H12F 105.6 H12F 104.3 C13C-C12C- 104.3 H12E 104.3 C13C-C12C- 104.3 | C14C-C15C- | 111.3 | | C16C C10-C11C-H11C C10-C11C-H11D C10-C11C-H11D H11C-C11C- H11D C12C-C11C-C10 C12C-C11C- H10.3 H11C C12C-C11C- H10.3 H11D C11C-C12C- H12E C11C-C12C- H12F C13C-C12C- H12F C13C-C12C- H12E C13C-C12C- H12E C13C-C12C- H12E C13C-C12C- H04.3 H12E C13C-C12C- H04.3 H12E C13C-C12C- H04.3 | H15F | | | C10-C11C-H11C 110.3 C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D 107.1(13) C12C-C11C-C10 107.1(13) C12C-C11C- 110.3 H11C 110.3 C12C-C11C- 104.3 H11D 104.3 C11C-C12C- 104.3 H12E 104.3 C11C-C12C- 131.6(17) C13C 105.6 H12F 104.3 C13C-C12C- 104.3 H12E 104.3 | C14C-C15C- | 102.6(11) | | C10-C11C-H11D 110.3 H11C-C11C- 108.5 H11D 107.1(13) C12C-C11C-C10 107.1(13) C12C-C11C- 110.3 H11C 110.3 H11D 104.3 H12E 104.3 H12F 131.6(17) C13C 105.6 H12F 104.3 C13C-C12C- 104.3 H12E 104.3 H12E 104.3 | | | | H11C-C11C- H11D C12C-C11C-C10 C12C-C11C- H10.3 H11C C12C-C11C- H10.3 H11D C11C-C12C- H12E C11C-C12C- H12F C13C-C12C- H12F C13C-C12C- H12E H14.3 | C10-C11C-H11C | 110.3 | | H11D C12C-C11C-C10 107.1(13) C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12F C13C-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C10-C11C-H11D | 110.3 | | C12C-C11C-C10 107.1(13) C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12F-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H11C-C11C- | 108.5 | | C12C-C11C- 110.3 H11C C12C-C11C- 110.3 H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H11D | | | H11C C12C-C11C- 110.3 H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C12C-C11C-C10 | 107.1(13) | | C12C-C11C- 110.3 H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C12C-C11C- | 110.3 | | H11D C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H11C | | | C11C-C12C- 104.3 H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C12C-C11C- | 110.3 | | H12E C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H11D | | | C11C-C12C- 104.3 H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C11C-C12C- | 104.3 | | H12F C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | H12E | | | C11C-C12C- 131.6(17) C13C H12E-C12C- 105.6 H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C11C-C12C- | 104.3 | | C13C H12E-C12C- H12F C13C-C12C- H12E C13C-C12C- 104.3 | H12F | | | H12E-C12C- 105.6
H12F
C13C-C12C- 104.3
H12E
C13C-C12C- 104.3 | C11C-C12C- | 131.6(17) | | H12F C13C-C12C- 104.3 H12E C13C-C12C- 104.3 | C13C | | | C13C-C12C- 104.3
H12E
C13C-C12C- 104.3 | H12E-C12C- | 105.6 | | H12E
C13C-C12C- 104.3 | H12F | | | C13C-C12C- 104.3 | C13C-C12C- | 104.3 | | | H12E | | | H12F | C13C-C12C- | 104.3 | | | H12F | | | H16E 109.8 H16F 109.8 H16F 108.2 H16F 109.5(15) C17C-C16C- 109.5(15) C15C 109.8 C17C-C16C- 109.8 H16E 109.8 C12C-C13C- 109.5 H13E 109.5 C12C-C13C- 110.9(15) C14C 108.1 H13F 109.5 H13E 109.5 H13E 109.5 H13F 109.5 C14C-C13C- 109.5 H13F 107.0 C15C-C14C- 107.0 H14E 107.0 | C15C-C16C- | 109.8 | |---|------------|-----------| | H16F H16E-C16C- 108.2 H16F 109.5(15) C17C-C16C- 109.8 H16E 109.8 C17C-C16C- 109.8 H16F 109.5 C12C-C13C- 109.5 H13E 110.9(15) C12C-C13C- 110.9(15) C14C 108.1 H13F 109.5 H13E 109.5 H13F 109.5 H13F 109.5 H13F 107.0 H14E 107.0 | H16E | | | H16E-C16C- 108.2 H16F C17C-C16C- 109.5(15) C15C C17C-C16C- 109.8 H16E C17C-C16C- 109.8 H16F C12C-C13C- 109.5 H13E C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C14C-C13C- 109.5 H13F C14C-C13C- 109.5 H13F C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | C15C-C16C- | 109.8 | | H16F C17C-C16C- 109.5(15) C15C 109.8 C17C-C16C- 109.8 H16E 109.8 C17C-C16C- 109.8 H16F 109.5 C12C-C13C- 109.5 H13F 10.9(15) C14C 108.1 H13F 109.5 H13E 109.5 H13E 109.5 H13F 109.5 C14C-C13C- 109.5 H13F 107.0 C15C-C14C- 107.0 H14E 107.0 | H16F | | | C17C-C16C- 109.5(15) C15C 109.8 C17C-C16C- 109.8 H16E 109.8 C17C-C16C- 109.8 H16F 109.5 C12C-C13C- 109.5 H13E 109.5 C12C-C13C- 110.9(15) C14C 108.1 H13F 109.5 H13E 109.5 H13F 109.5 H13F 109.5 C15C-C14C- 107.0 H14E 107.0 | H16E-C16C- | 108.2 | | C15C C17C-C16C- 109.8 H16E C17C-C16C- 109.8 H16F C12C-C13C- 109.5 H13E C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 109.5 H13F C15C-C14C- 107.0 H14E | H16F | | | C17C-C16C- 109.8 H16E 109.8 C17C-C16C- 109.8 H16F 109.5 C12C-C13C- 109.5 H13E 109.5 C12C-C13C- 110.9(15) C14C 108.1 H13F 109.5 H13E 109.5 H13F 109.5 H13F 107.0 C15C-C14C- 107.0 H14E 107.0 | C17C-C16C- | 109.5(15) | | H16E C17C-C16C- 109.8 H16F C12C-C13C- 109.5 H13E C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | C15C | | | C17C-C16C- 109.8 H16F 109.5 C12C-C13C- 109.5 H13E 109.5 C12C-C13C- 110.9(15) C14C 108.1 H13F 109.5 H13E 109.5 H13E 109.5 H13F 109.5 C14C-C13C- 109.5 H13F 107.0 C15C-C14C- 107.0 H14E 107.0 | C17C-C16C- | 109.8 | | H16F C12C-C13C- 109.5 H13E C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | H16E | | | C12C-C13C- 109.5 H13E C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | C17C-C16C- | 109.8 | | H13E C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | H16F | | | C12C-C13C- 109.5 H13F C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | C12C-C13C- | 109.5 | | H13F C12C-C13C- C14C H13E-C13C- H13F C14C-C13C- H13E C14C-C13C- H13E C14C-C13C-
H13F C15C-C14C- H14E | H13E | | | C12C-C13C- 110.9(15) C14C H13E-C13C- 108.1 H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | C12C-C13C- | 109.5 | | C14C H13E-C13C- H13F C14C-C13C- H13E C14C-C13C- H13F C15C-C14C- H14E 108.1 109.5 109.5 109.5 | H13F | | | H13E-C13C- 108.1
H13F 109.5
C14C-C13C- 109.5
H13E 109.5
H13F 109.5
H13F 107.0
H14E 107.0 | C12C-C13C- | 110.9(15) | | H13F C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | C14C | | | C14C-C13C- 109.5 H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | H13E-C13C- | 108.1 | | H13E C14C-C13C- 109.5 H13F C15C-C14C- 107.0 H14E | H13F | | | C14C-C13C- 109.5
H13F
C15C-C14C- 107.0
H14E | C14C-C13C- | 109.5 | | H13F C15C-C14C- 107.0 H14E | H13E | | | C15C-C14C- 107.0
H14E | C14C-C13C- | 109.5 | | H14E | H13F | | | | C15C-C14C- | 107.0 | | C15C-C14C- 107.0 | H14E | | | | C15C-C14C- | 107.0 | | H14F | H14F | | | C13C-C14C- 121.4(14) | C13C-C14C- | 121.4(14) | | C15C | C15C | | | C13C-C14C- 107.0 | C13C-C14C- | 107.0 | | H14E | H14E | | | C13C-C14C- 107.0 | C13C-C14C- | 107.0 | | H14F | H14F | | | H14E-C14C- 106.7 | H14E-C14C- | 106.7 | | H14F | H14F | | | C16C-C17C- | 109.5 | |----------------|-------| | H17G | | | C16C-C17C- | 109.5 | | H17H | | | C16C-C17C-H17I | 109.5 | | H17G-C17C- | 109.5 | |----------------|-------| | H17H | | | H17G-C17C-H17I | 109.5 | | H17H-C17C-H17I | 109.5 | Table 5. Torsion angles for 1829_p21c | Atom-Atom-Atom- | Torsion Angle | |-----------------|---------------| | Atom | [°] | | O2-C2-C3-C4 | 179.93(11) | | O2-C2-C1-O1 | -2.28(16) | | O2-C2-C1-C6 | 178.59(11) | | O1-C1-C6-C5 | -177.48(11) | | O4-N2-C5-C4 | -19.20(18) | | O4-N2-C5-C6 | 162.53(12) | | O5-C9-C10-C11 | -41.3(2) | | O5-C9-C10-C11C | -84.7(8) | | O3-N2-C5-C4 | 160.82(12) | | O3-N2-C5-C6 | -17.45(17) | | N2-C5-C6-C1 | 179.27(11) | | N1-C9-C10-C11 | 138.96(15) | | N1-C9-C10-C11C | 95.6(8) | | C2-C3-C4-C5 | 1.02(17) | | C2-C3-C4-C7 | -177.31(11) | | C2-C1-C6-C5 | 1.60(18) | | C3-C2-C1-O1 | 176.30(11) | | C3-C2-C1-C6 | -2.83(18) | | C3-C4-C5-N2 | 179.54(10) | | C3-C4-C5-C6 | -2.31(17) | | C3-C4-C7-N1 | 16.59(16) | | C4-C5-C6-C1 | 1.03(18) | | C5-C4-C7-N1 | -161.58(11) | | C1-C2-C3-C4 | 1.51(18) | | C7-N1-C9-O5 | -1.8(2) | | C7-N1-C9-C10 | 177.96(13) | | C7-C4-C5-N2 | -2.23(18) | | C7-C4-C5-C6 | 175.93(11) | |------------------|------------| | C9-N1-C7-C4 | 85.05(15) | | C9-C10-C11-C12 | -65.2(2) | | C9-C10-C11C- | 73.3(16) | | C12C | | | C8-O2-C2-C3 | 0.28(18) | | C8-O2-C2-C1 | 178.78(11) | | C10-C11-C12-C13A | -168.0(4) | | C10-C11-C12-C13B | 158.6(5) | | C10-C11C-C12C- | 137(2) | | C13C | | | C11-C12-C13A- | -66.5(7) | | C14A | | | C11-C12-C13B- | 69.5(9) | | C14B | | | C12-C13A-C14A- | 165.3(5) | | C15A | | | C12-C13B-C14B- | 149.3(8) | | C15B | | | C16A-C15A-C14A- | 82.6(9) | | C13A | | | C17A-C16A-C15A- | 153.5(9) | | C14A | | | C13B-C14B-C15B- | 97.1(14) | | C16B | | | C14B-C15B-C16B- | 142.6(16) | | C17B | | | C11C-C12C-C13C- | 107(3) | | C14C | | | C12C-C13C-C14C- | 133.7(19) | |-----------------|-----------| | C15C | | | C16C-C15C-C14C- | 72(2) | | C13C | | | C14C-C15C-C16C- | 146.5(19) | | C17C | | #### 7. References - 1 L. M. Hagge, A. Shahrivarkevishahi, N. M. Al-Kharji, Z. Chen, O. R. Brohlin, I. Trashi, A. Tumac, F. C. Herbert, A. V. Adlooru, H. Lee, H. R. Firouzi, S. A. Cornelius, N. J. De Nisco and J. J. Gassensmith, *J. Mater. Chem. B*, 2023, **11**, 7126–7133. - 2 A. K. Migglautsch, M. Willim, B. Schweda, A. Glieder, R. Breinbauer and M. Winkler, *Tetrahedron*, 2018, **74**, 6199–6204. - 3 M. Anderson, S. Afewerki, P. Berglund and A. Córdova, *Adv Synth Catal*, 2014, **356**, 2113–2118. - 4 N. Mougios, E. R. Cotroneo, N. Imse, J. Setzke, S. O. Rizzoli, N. A. Simeth, R. Tsukanov and F. Opazo, *Nat Commun*, 2024, **15**, 8771. - 5 K. Stranius and K. Börjesson, *Scientific Reports*, 2017, **7**, 1–9. - 6 G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, *J Comput Chem*, 2009, **30**, 2785–2791. - 7 J. Eberhardt, D. Santos-Martins, A. F. Tillack and S. Forli, *J. Chem. Inf. Model.*, 2021, **61**, 3891–3898. - 8 O. Trott and A. J. Olson, *J Comput Chem*, 2010, **31**, 455–461. - 9 M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, *SoftwareX*, 2015, **1–2**, 19–25. - 10J. Huang and A. D. MacKerell, J. Comput. Chem., 2013, 34, 2135–2145. - 11 S. Jo, T. Kim, V. G. Iyer and W. Im, *J Comput Chem*, 2008, **29**, 1859–1865. - 12 J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman, J. A. Lemkul, S. Wei, J. Buckner, J. C. Jeong, Y. Qi, S. Jo, V. S. Pande, D. A. Case, C. L. Brooks, A. D. MacKerell, J. B. Klauda and W. Im, *J. Chem. Theory Comput.*, 2016, **12**, 405–413. - 13S. Jo, T. Kim and W. Im, *PLoS ONE*, 2007, **2**, e880. - 14 K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov and A. D. Mackerell, *J Comput Chem*, 2010, **31**, 671–690. - 15A. Burgalossi, S. Jung, K. M. Man, R. Nair, W. J. Jockusch, S. M. Wojcik, N. Brose and J.-S. Rhee, *Nat Protoc*, 2012, **7**, 1351–1365. - 16 Bruker, SAINT, V8.40A, Bruker AXS Inc., Madison, Wisconsin, USA. - 17L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J Appl Crystallogr*, 2015, **48**, 3–10. - 18G. M. Sheldrick, Acta Crystallogr A Found Adv, 2015, 71, 3-8. - 19G. M. Sheldrick. Acta Crystallogr C Struct Chem. 2015. 71. 3-8. - 20 C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, *Acta Crystallogr B Struct Sci Cryst Eng Mater*, 2016, **72**, 171–179. - 21D. Kratzert, FinalCif, V113, https://dkratzert.de/finalcif.html.