Supplementary Information

Convergent and Divergent Synthesis of Dihydroisoquinoline-1,4diones Enabled by a Photocatalytic Skeleton-Editing [4+2] Strategy

Hai-Wu Du,¹ Jun-Song Jia,² Xiao-Yi Chen,¹ Zhang-Yin Yuan,^{1,2} Jia-Ni Lin,¹ Yu-Long Li,^{2,*} Qiong Yu,^{1,*} and Wei Shu^{1,2,*}

¹Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China

²College of Chemistry and Environmental Engineering, Innovation Center for Chenguang High Performance Fluorine Material, and Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, P. R. China

Table of Contents

I. General Information	S2
II. Reaction Condition Optimization	S3
III. Substrate Source	S15
IV. General Procedures	S25
V. Characterization of Products	S26
VI. Mechanistic Study	S44
VII. Unsuccessful Substrates	S54
VIII. X-Ray Diffraction Data	S56
IX. References	S59
X. ¹ H ₅ ¹³ C and ¹⁹ F Spectra of Compounds	S60

I. General Information

General remarks: ¹H and ¹³C NMR spectra were recorded in CDCl₃ (unless otherwise noted) on a Bruker AVANCE 600 MHz or a Bruker AVANCE 400 MHz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm) on the δ scale from an internal standard of TMS (0.00 ppm). Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad), coupling constant in Herts (Hz) and integration. Data for ¹³C NMR spectra were reported in terms of chemical shift in ppm from the central peak of CDCl₃ (77.16 ppm). High-resolution electrospray ionization and electronic impact mass spectrometer (mass analyzer type: Orbitrap).

Materials and methods: Unless otherwise noted, all reactions and substrates preparation were conducted in flame-dried glassware under a nitrogen atmosphere using anhydrous solvent re-distilled according to Purification of Laboratory Chemicals (Fifth Edition). Commercially available reagents were used without further purification. Thin layer chromatography (TLC) was performed on Jiangyou TLC silica gel plates HSG F254 and visualized by UV light or staining with anisaldehyde or potassium permanganate. Flash column chromatography was performed over silica gel (300-400 mesh). Photochemical reactions were carried out under irradiation from 30 W blue LED (composed of 30 LED units each with 1.0 W).

II. Reaction Condition Optimization

	N3 Ir(ppy)2(bpy)PF6 (2 mol/ Hantzsch ester (4.2 equiv) N3 Ir(ppy)2(bpy)PF6 (2 mol/ Hantzsch ester (4.2 equiv) N4 (2.7 equiv) DCM (1.8 mL), 30 W blue 35 °C, 16 h 1a (1.8 equiv) 2a (0.1 mmol)		
Entry	2,4,6-Collidine (X mol%)	Conv. of 2a (%)	Yield of 3a (%)
1	0	>95	43
2	10	>95	42
3	20	>95	50
4	40	>95	57
5	80	>95	62
6	100	>95	52
7	150	>95	37
8	200	>95	33

Table S1. Investigation of the amount of 2,4,6-collidine for two-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1a** (0.18 mmol), **2a** (0.10 mmol), **A1** (0.27 mmol), Ir(ppy)₂(bpy)PF₆ (0.002 mmol), Hantzsch ester (0.42 mmol) and 2,4,6-collidine (X mol%) in DCM (1.8 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 16 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard.

	1a (1.8 equiv) 2a (0.1 mmol)	Ir(ppy) ₂ (bpy)PF ₆ (2 mol%) Hantzsch ester (X equiv) ▲1 (Y equiv) DCM (1.8 mL), 30 W blue LEDs 35 °C, 16 h 2,4,6-Collidine (80 mol%)	SH 3a A	о о 1
Entry	(X equiv)	(Y equiv)	Conv. of 2a (%)	Yield of 3a (%)
1	4.2	2.2	>95	55
2	4.2	2.5	>95	67
3	4.2	3.0	>95	60
4	4.2	3.5	>95	47
5	3.5	2.5	>95	58
6	3.8	2.5	>95	62
7	4.0	2.5	>95	68 (63)
8	4.5	2.5	>95	60

Table S2. Investigation of the amount of A1 and Hantzsch ester for two-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1a** (0.18 mmol), **2a** (0.10 mmol), **A1** (Y equiv), $Ir(ppy)_2(bpy)PF_6$ (0.002 mmol), Hantzsch ester (X equiv) and 2,4,6-collidine (0.08 mmol) in DCM (1.8 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 16 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses.

	PC (2 mol%) Hantzsch ester (4.0 equ Hantzsch ester (4.0 equ Hantzsch ester (4.0 equ A1 (2.5 equiv) DCM (1.8 mL), 300 wlue 1 35 °C, 16 h		A1
Entry	PC	Conv. of 2a (%)	Yield of 3a (%)
1	Ir(ppy) ₂ (bpy)PF ₆	>95	68 (63)
2	4CzIPN	>95	56
3	4CzIPN-Cl	>95	52
4	Ir(ppy)3	>95	trace
5	Ru(bpy)3(PF6)2	>95	34
6	Mes-Acr-3,6-'Bu2-Ph ⁺ ⁻ BF4	>95	trace
	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ $	z CI-Cz CN	(PF ₆) ₂
	¹ Bu Ph Ph Mes-Acr-3,6- ¹ Bu ₂ -Ph ⁺ ⁻ BF ₄ 4CzIPN	CI CI CI 4CZIPN-0	CI CZ-CI

Table S3. Investigation of the PC for two-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1a** (0.18 mmol), **2a** (0.10 mmol), **A1** (0.25 mmol), PC (0.002 mmol), Hantzsch ester (0.40 mmol) and 2,4,6-collidine (0.08 mmol) in DCM (1.8 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 16 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses.

	$\begin{array}{c} & Ir(ppy)_2(bpy)F\\ Hantzsch este\\ \mathbf{A}1 (2.5)\\ 24 (0.1 \text{ mmol}) \end{array} \\ \begin{array}{c} Ir(py)_2(bpy)F\\ Hantzsch este\\ \mathbf{A}1 (2.5)\\ 2.4,6\text{-Collidin}\\ \textbf{solvent} (1.8 \text{ mL}),\\ 35 \ ^\circ \text{C}, \end{array}$	r (4.0 equiv) equiv) e (80 mol%) 30 W blue LEDs	
Entry	Solvent	Conv. of 2a (%)	Yield of 3a (%)
1	DCE	>95	41
2	1,1,2-TCE	>95	35
3	PhCl	>95	44
4	MeCN	>95	22
5	THF	>95	ND

Table S4. Investigation of the solvent for two-component reaction.^a

^a Reaction conditions: A mixture of **1a** (0.18 mmol), **2a** (0.10 mmol), **A1** (0.25 mmol), Ir(ppy)₂(bpy)PF₆ (0.002 mmol), Hantzsch ester (0.40 mmol) and 2,4,6-collidine (0.08 mmol) in solvent (1.8 mL) was irradiated with 30 W blue LEDs at room temperature under N₂ for 16 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. ND = not detected.

<	$\begin{array}{c} \begin{array}{c} & & & \\ & & $	r (4.0 equiv) equiv) mol%) 0 W blue LEDs	
Entry	Base	Conv. of 2a (%)	Yield of 3a (%)
1	2,6-lutidine	>95	48
2	DABCO	>95	56
3	DMAP	>95	59
4	K ₂ CO ₃	>95	47
5	Cs ₂ CO ₃	>95	12
6	K ₂ HPO ₄	>95	58

Table S5. Investigation of the base for two-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1a** (0.18 mmol), **2a** (0.10 mmol), **A1** (0.25 mmol), $Ir(ppy)_2(bpy)PF_6$ (0.002 mmol), Hantzsch ester (0.40 mmol) and base (0.08 mmol) in DCM (1.8 mL) was irradiated with 30 W blue LEDs at room temperature under N₂ for 16 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard.

	Ir(ppy)2(bpy)PF6 (2 mol%) Hantzsch ester (4.0 equiv) A1 (2.5 equiv) 24,6-Collidine (80 mol%) DCM (1.8 mL), 30 W blue LED 35 °C, 16 h	s sa	А1
Entry	variation from standard conditions	Conv. of 2a (%)	Yield of 3a (%)
1	w/o Ir(ppy)2(bpy)PF6	>95	ND
2	w/o Light	<5	ND
3	w/o Hantzsch	>95	ND
4	w/o A1	>95	11
5	Air	>95	31

Table S6. Control experiment for two-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1a** (0.18 mmol), **2a** (0.10 mmol), **A1** (0.25 mmol), Ir(ppy)₂(bpy)PF₆ (0.002 mmol), Hantzsch ester (0.40 mmol) and 2,4,6-collidine (0.08 mmol) in DCM (1.8 mL) was irradiated with 30 W blue LEDs at room temperature under N₂ for 16 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. ND = not detected.

	N ₃ N ₀ + Ph	+ N-OH	PC (2 mol%) Hantzsch ester (4.0 equiv) DCM (0.1 M) 30 W blue LEDs 35 °C, 12 h	Ph
	1m (1.2 equiv) 2a (1.0 equiv)	4a (2.5 equiv)		3a
Entry	PC		Conv. of 2a (%)	Yield of 3a (%)
1	4CzIPN-C		>95	58
2	Ir(ppy)2(bpy)	PF ₆	>95	45
3	4CzIPN		>95	50

Table S7. Investigation of photocatalyst for three-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1m** (0.12 mmol), **2a** (0.10 mmol), **4a** (0.25 mmol), PC (0.002 mmol), Hantzsch ester (0.40 mmol) in DCM (1.0 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 12 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard.

	$\frac{1}{1} (X equiv)$ $\frac{1}{2} (1.0 equiv)$ $\frac{1}{2} (1.0 equiv)$ $\frac{1}{2} (1.0 equiv)$ $\frac{1}{2} (1.0 equiv)$	DCM (0.1 M) 30 W blue LEDs 35 °C, 12 h	H H H Ph Ba
Entry	1m (X equiv)	Conv. of 2a (%)	Yield of 3a (%)
1	1.2	>95	58
2	1.5	>95	61
3	1.8	>95	64
4	2.0	>95	65
5	2.2	>95	65
6	2.4	>95	65
7	2.6	>95	68
8	2.8	>95	69
9	3.0	>95	72
10	3.2	>95	69
11	3.5	>95	61

Table S8. Investigation of amount of 1m for three-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1m** (X equiv), **2a** (0.10 mmol), **4a** (0.25 mmol), 4CzIPN-Cl (0.002 mmol), Hantzsch ester (0.40 mmol) in DCM (1.0 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 12 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard.

	$\frac{1}{10} (3.0 \text{ equiv})$	+ N-OH Hant	zIPN-CI (2 mol%) csch ester (X equiv) DCM (Y mL) 0 W blue LEDs 35 °C, 12 h 3a	Ph
Entry	HE (X equiv)	DCM (Y mL)	Conv. of 2a (%)	Yield of 3a (%)
1	3.5	1.0	>95	40
2	3.8	1.0	>95	44
3	4.2	1.0	>95	62
4	4.5	1.0	>95	53
5	4.0	0.8	>95	66
6	4.0	1.2	>95	66
7	4.0	1.5	>95	56

Table S9. Investigation of amount of Hantzsch ester and concentration for threecomponent reaction.^a

^{*a*} Reaction conditions: A mixture of **1m** (0.30 mmol), **2a** (0.10 mmol), **4a** (0.25 mmol), 4CzIPN-Cl (0.002 mmol), Hantzsch ester (X equiv) in DCM (Y mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 12 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard.

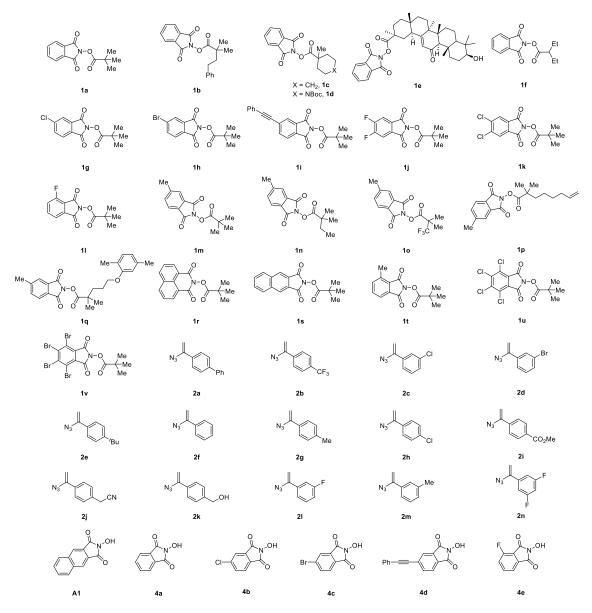
	$\frac{1}{10} (3.0 \text{ equiv}) \qquad \frac{1}{2a} (1.0 eq$	A A A A A A A A A A CZIPN-CI (2 mol%) A A A A A A A A A A A A A	H H H Ph Ba
Entry	base (X equiv)	Conv. of 2a (%)	Yield of 3a (%)
1	DMAP (1.0 equiv)	>95	38
2	DABCO (1.0 equiv)	>95	45
3	2,4,6-collidine (1.0 equiv)	>95	61
4	2,6-lutidine (1.0 equiv)	>95	49
5	Li ₂ CO ₃ (1.0 equiv)	>95	61
6	K ₂ HPO ₄ (1.0 equiv)	>95	31
7	KHCO ₃ (1.0 equiv)	>95	44
8	NaOAc (1.0 equiv)	>95	24
9	2,4,6-collidine (0.8 equiv)	>95	60
10	2,4,6-collidine (0.6 equiv)	>95	61
11	2,4,6-collidine (0.4 equiv)	>95	61
12	2,4,6-collidine (0.2 equiv)	>95	62

Table S10. Investigation of base for three-component reaction.^a

^{*a*} Reaction conditions: A mixture of **1m** (0.30 mmol), **2a** (0.10 mmol), **4a** (0.25 mmol), 4CzIPN-Cl (0.002 mmol), Hantzsch ester (0.4 mmol) and base (X equiv) in DCM (1.0 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 12 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard.

	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ T	4CzIPN-CI (2 mol%) Hantzsch ester (4.0 equiv) 2,4,6-Collidine (0.4 equiv) DCM (0.1 M) 30 W blue LEDs 4a (2.5 equiv) 35 °C, 12 h	SNH H Ja
Entry	1m (X equiv)	Conv. of 2a (%) Yield of 3a (%)
1	3.2	>95	51
2	2.8	>95	59
3	2.6	>95	59
4	2.4	>95	75
5	2.2	>95	76
6	2.0	>95	78
7	1.8	>95	80 (78)
8	1.6	>95	72
9	1.4	>95	66

Table S11. Investigation of amount of 1m for three-component reaction.^a


^a Reaction conditions: A mixture of **1m** (X equiv), **2a** (0.10 mmol), **4a** (0.25 mmol), 4CzIPN-Cl (0.002 mmol), Hantzsch ester (0.4 mmol) and 2,4,6-collidine (0.04 mmol) in DCM (1.0 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 12 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses.

	└──< ij + (`` ` + () №-ОН –	4CzIPN-CI (2 mol%) antzsch ester (4.0 equiv) 4.6-Collidine (0.4 equiv) DCM (0.1 M) 30 W blue LEDs 35 °C, 12 h 3a	Ph
Entry	variation from standard conditions	Conv. of 2a (%)	Yield of 3a (%)
1	w/o PC	55	ND
2	w/o Hantzsch ester	>95	ND
3	w/o light	<5	ND
4	w/o 2,4,6-collidine	>95	56
5	w/o 4a	>95	ND

Table S12. Control experiment for three-component reaction.^a

^a Reaction conditions: a mixture of **1m** (0.18 mmol), **2a** (0.10 mmol), **4a** (0.25 mmol), 4CzIPN-Cl (0.002 mmol), Hantzsch ester (0.4 mmol) and 2,4,6-collidine (0.04 mmol) in DCM (1.0 mL) was irradiated with 30 W blue LEDs at 35 °C under N₂ for 12 h. Yield was determined by ¹H NMR of the crude mixture using mesitylene as internal standard. Isolated yield after flash chromatography is shown in the parentheses. ND = not detected. ND = not detected.

III. Substrate Source

Synthesis and characterization of substrates

4a, 4f were purchased and used directly without further purification.

The following substrates are known compounds:

 $1a^{1}, 1b^{2}, 1c^{3}, 1d^{4}, 1e^{5}, 1f^{1}, 1t^{6}, 2a^{1}, 2b^{1}, 2c^{1}, 2d^{1}, 2e^{1}, 2f^{1}, 2g^{1}, 2h^{7}, 2i^{7}, 2j^{8}, 2k^{1}, 2l^{1}, 2m^{7}, 2n^{9}, A1^{10}, 4b^{11}, 4c^{10}, 4e^{12}.$

These compounds were prepared according to literature: $1g^1$, $1h^1$, $1i^1$, $1j^1$, $1k^1$, $1l^1$, $1m^1$, $1n^1$, $1o^1$, $1p^1$, $1q^1$, $1r^1$, $1s^1$, $1u^1$, $1v^1$, $4d^{10}$.

1,3-Dioxoisoindolin-2-yl pivalate (1a)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.4, 3.1 Hz, 2H), 1.43 (s, 9H).

1,3-Dioxoisoindolin-2-yl 2,2-dimethyl-4-phenylbutanoate (1b)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.92 – 7.87 (m, 2H), 7.82 – 7.76 (m, 2H), 7.33 – 7.26 (m, 4H), 7.22 – 7.17 (m, 1H), 2.80 – 2.74 (m, 2H), 2.06 – 2.00 (m, 2H), 1.47 (s, 6H).

1,3-Dioxoisoindolin-2-yl 1-methylcyclohexane-1-carboxylate (1c)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.90 – 7.86 (m, 2H), 7.80 – 7.76 (m, 2H), 2.24 (d, *J* = 13.2 Hz, 2H), 1.70 – 1.62 (m, 3H), 1.61 – 1.55 (m, 2H), 1.43 (s, 3H), 1.42 – 1.35 (m, 2H), 1.31 – 1.25 (m, 1H).

1-(*tert*-Butyl) 4-(1,3-dioxoisoindolin-2-yl) 4-methylpiperidine-1,4-dicarboxylate (1d)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.90 – 7.87 (m, 2H), 7.81 – 7.78 (m, 2H), 4.05 – 3.85 (m, 2H), 3.18 – 3.08 (m, 2H), 2.28 – 2.22 (m, 2H), 1.56 – 1.50 (m, 2H), 1.48 (s, 3H), 1.46 (s, 9H).

1,3-Dioxoisoindolin-2-yl (2*S*,4a*S*,6a*S*,6b*R*,10*S*,12a*S*,12b*R*,14b*S*)-10-hydroxy-2,4*a*,6*a*,6*b*,9,9,12*a*-heptamethyl-13-oxo-

1,2,3,4,4*a*,5,6,6*a*,6*b*,7,8,8*a*,9,10,11,12,12*a*,12*b*,13,14*b*-icosahydropicene-2carboxylate (1e)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 5.76 (s, 1H), 3.22 (dd, J = 10.8, 5.5 Hz, 1H), 2.79 (dt, J = 13.4, 3.6 Hz, 1H), 2.50 – 2.40 (m, 1H), 2.33 (s, 1H), 2.18 – 1.99 (m, 4H), 1.92 – 1.74 (m, 3H), 1.70 – 1.63 (m, 3H), 1.55 – 1.44 (m, 4H), 1.44 (s, 3H), 1.38 (s, 3H), 1.25 – 1.18 (m, 2H), 1.14 (s, 3H), 1.13 (s, 3H), 1.11 – 1.03 (m, 2H), 1.00 (s, 3H), 0.91 (s, 3H), 0.80 (s, 3H),

0.73 - 0.67 (m, 1H).

1,3-Dioxoisoindolin-2-yl 2-ethylbutanoate (1f)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.90 – 7.84 (m, 2H), 7.81 – 7.75 (m, 2H), 2.64 – 2.56 (m, 1H), 1.85 – 1.75 (m, 2H), 1.76 – 1.66 (m, 2H), 1.07 (t, *J* = 7.5 Hz, 6H).

5-Chloro-1,3-dioxoisoindolin-2-yl pivalate (1g)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 1.8 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.74 (dd, *J* = 8.0, 1.8 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 161.3, 161.0, 141.6, 134.9, 130.8, 127.2, 125.3, 124.5, 38.6, 27.1.

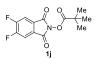
HR-MS (ESI-TOF) calcd for $C_{13}H_{12}CINNaO_4^+$ [M+Na]⁺ 304.0347; found 304.0348.

5-Bromo-1,3-dioxoisoindolin-2-yl pivalate (1h)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 1.7 Hz, 1H), 7.92 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 161.5, 160.9, 137.8, 130.7, 129.8, 127.6, 127.3, 125.4, 38.6, 27.1.

HR-MS (ESI-TOF) calcd for $C_{13}H_{12}BrNNaO_4^+$ [M+Na]⁺ 347.9842; found 347.9847.


1,3-Dioxo-5-(phenylethynyl)isoindolin-2-yl pivalate (1i)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.91 – 7.82 (m, 2H), 7.59 – 7.54 (m, 2H), 7.43 – 7.36 (m, 3H), 1.44 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 161.7, 161.6, 137.5, 132.0, 130.5, 129.50, 129.45, 128.7, 127.7, 126.7, 124.0, 122.1, 94.8, 87.6, 38.6, 27.2.

HR-MS (ESI-TOF) calcd for $C_{21}H_{17}NNaO_4^+$ [M+Na]⁺ 370.1050; found 370.1050.

5,6-Difluoro-1,3-dioxoisoindolin-2-yl pivalate (1j)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (t, *J* = 7.3 Hz, 2H), 1.42 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 160.4, 154.9 (dd, J = 262.6, 14.9 Hz), 126.2 (t, J = 5.8 Hz), 114.3 (dd, J = 14.9, 7.7 Hz), 38.6, 27.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -123.93 (t, J = 7.3 Hz, 2F).

HR-MS (ESI-TOF) calcd for $C_{13}H_{11}F_2NNaO_4^+$ [M+Na]⁺ 306.0548; found 306.0552. **5,6-Dichloro-1,3-dioxoisoindolin-2-yl pivalate (1k)**

¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (s, 2H), 1.43 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.2, 160.4, 139.9, 128.2, 126.2, 38.6, 27.1.

¹³C Quantitative-NMR (151 MHz, Chloroform-*d*) δ 174.3 (1C), 160.4 (2C), 139.9 (2C),

128.2 (2C), 126.2 (2C), 38.6 (1C), 27.1 (3C).

HR-MS (ESI-TOF) calcd for $C_{13}H_{11}Cl_2NNaO_4^+$ [M+Na]⁺ 337.9957; found 337.9959.

4-Fluoro-1,3-dioxoisoindolin-2-yl pivalate (11)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (ddd, *J* = 8.4, 7.4, 4.4 Hz, 1H), 7.71 (dd, *J* = 7.4, 0.8 Hz, 1H), 7.45 (td, *J* = 8.4, 0.8 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 161.1 (d, *J* = 3.3 Hz), 158.9 (d, *J* = 0.9 Hz), 157.7 (d, *J* = 267.2 Hz), 137.5 (d, *J* = 7.9 Hz), 131.0 (d, *J* = 1.6 Hz), 123.3 (d, *J* = 19.7 Hz), 120.2 (d, *J* = 3.7 Hz), 115.1 (d, *J* = 12.8 Hz), 38.5, 27.1.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.05 (dd, *J* = 8.7, 4.4 Hz, 1F).

HR-MS (ESI-TOF) calcd for $C_{13}H_{12}FNNaO_4^+$ [M+Na]⁺ 288.0643; found 288.0642.

5-Methyl-1,3-dioxoisoindolin-2-yl pivalate (1m)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.68 (s, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 2.53 (s, 3H), 1.43 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.6, 162.5, 162.4, 146.3, 135.3, 129.5, 126.5, 124.5, 124.0, 38.5, 27.2, 22.3.

HR-MS (ESI-TOF) calcd for $C_{14}H_{15}NNaO_4^+$ [M+Na]⁺ 284.0893; found 284.0891.

5-Methyl-1,3-dioxoisoindolin-2-yl 2,2-dimethylbutanoate (1n)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.6 Hz, 1H), 7.67 (s, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 2.52 (s, 3H), 1.78 (q, *J* = 7.4 Hz, 2H), 1.38 (s, 6H), 1.04 (t, *J* = 7.4 Hz, 3H).

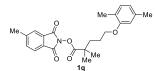
¹³C NMR (151 MHz, Chloroform-*d*) δ 174.1, 162.6, 162.4, 146.2, 135.3, 129.5, 126.5, 124.5, 123.9, 42.6, 33.7, 24.8, 22.3, 9.2.

HR-MS (ESI-TOF) calcd for $C_{15}H_{17}NNaO_4^+$ [M+Na]⁺ 298.1050; found 298.1049.

5-Methyl-1,3-dioxoisoindolin-2-yl 3,3,3-trifluoro-2,2-dimethylpropanoate (10)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 7.6 Hz, 1H), 7.70 (s, 1H), 7.59 (d, *J* = 7.2 Hz, 1H), 2.54 (s, 3H), 1.66 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 162.8, 161.7, 146.6, 135.6, 129.2, 126.3, 125.6 (q, *J* = 283.8 Hz), 124.7, 124.2, 48.4 (q, *J* = 27.7 Hz), 22.3, 19.8 (q, *J* = 2.3 Hz).
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -74.94 (s, 3F).


HR-MS (ESI-TOF) calcd for $C_{14}H_{12}F_3NNaO_4^+$ [M+Na]⁺ 338.0611; found 338.0610. 5-Methyl-1,3-dioxoisoindolin-2-yl 2,2-dimethyloct-7-enoate (1p)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 7.6 Hz, 1H), 7.67 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 5.89 – 5.77 (m, 1H), 5.05 – 4.88 (m, 2H), 2.52 (s, 3H), 2.14 – 2.06 (m, 2H), 1.75 – 1.67 (m, 2H), 1.49 – 1.42 (m, 4H), 1.38 (s, 6H).

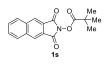
¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 162.4, 162.3, 146.2, 138.9, 135.2, 129.4, 126.4, 124.4, 123.9, 114.5, 42.2, 40.6, 33.6, 29.3, 25.2, 24.3, 22.2.

HR-MS (ESI-TOF) calcd for C₁₉H₂₃NNaO₄⁺ [M+Na]⁺ 352.1519; found 352.1517.

5-Methyl-1,3-dioxoisoindolin-2-yl 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoate (1q)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.68 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.68 – 6.63 (m, 2H), 4.01 (t, *J* = 3.4 Hz, 2H), 2.53 (s, 3H), 2.31 (s, 3H), 2.19 (s, 3H), 1.95 (d, *J* = 2.8 Hz, 4H), 1.44 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.9, 162.5, 162.4, 157.1, 146.3, 136.6, 135.3, 130.4, 129.4, 126.5, 124.5, 123.9, 123.7, 120.8, 112.1, 67.9, 42.1, 37.5, 25.2, 25.1, 22.3,

21.5, 15.9.


¹³C Quantitative-NMR (151 MHz, Chloroform-*d*) δ 173.9 (1C), 162.5 (1C), 162.4 (1C), 157.1 (1C), 146.3 (1C), 136.6 (1C), 135.3 (1C), 130.4 (1C), 129.4 (1C), 126.4 (1C), 124.5 (1C), 123.9 (1C), 123.7 (1C), 120.8 (1C), 112.1(1C), 67.9 (1C), 42.1 (1C), 37.5 (1C), 25.2 (2C), 25.1 (1C), 22.3 (1C), 21.5 (1C), 15.9 (1C). HR-MS (ESI-TOF) calcd for $C_{24}H_{27}NNaO_5^+$ [M+Na]⁺ 432.1781; found 432.1782.

1,3-Dioxo-1*H*-benzo[*de*]isoquinolin-2(3*H*)-yl pivalate (1r)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (dd, *J* = 7.2, 1.2 Hz, 2H), 8.27 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.78 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 2H), 1.51 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 159.8, 135.1, 132.0, 131.9, 127.7, 127.2, 122.5, 38.7, 27.2.

HR-MS (ESI-TOF) calcd for $C_{17}H_{15}NNaO_4^+$ [M+Na]⁺ 320.0893; found 320.0894. **1,3-Dioxo-1,3-dihydro-2***H***-benzo[***f***]isoindol-2-yl pivalate (1s)**

¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (s, 2H), 8.10 – 8.04 (m, 2H), 7.76 – 7.71 (m, 2H), 1.46 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 161.8, 135.6, 130.5, 129.8, 125.8, 124.7, 38.6, 27.2.

HR-MS (ESI-TOF) calcd for $C_{17}H_{15}NNaO_4^+$ [M+Na]⁺ 320.0893; found 320.0891.

4-Methyl-1,3-dioxoisoindolin-2-yl pivalate (1t)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 2.69 (s, 3H), 1.43 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 163.1, 162.3, 138.8, 137.2, 134.3, 129.6, 125.9, 121.7, 38.6, 27.2, 17.8.

HR-MS (ESI-TOF) calcd for C₁₄H₁₅NNaO₄⁺ [M+Na]⁺ 284.0893; found 284.0895.

4,5,6,7-Tetrachloro-1,3-dioxoisoindolin-2-yl pivalate (1u)

$$CI$$
 O O Me
 CI O Me
 CI O Me

¹H NMR (400 MHz, Chloroform-*d*) δ 1.43 (s, 9H).

4,5,6,7-Tetrabromo-1,3-dioxoisoindolin-2-yl pivalate (1v)

¹H NMR (400 MHz, Chloroform-*d*) δ 1.43 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 174.0, 158.3, 138.6, 128.0, 122.1, 38.6, 27.1. HR-MS (ESI-TOF) calcd for C₁₃H₉Br₄NNaO₄⁺ [M+Na]⁺ 581.7157; found 581.7163.

4-(1-Azidovinyl)-1,1'-biphenyl (2a)

N₃ 2a Ph

¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 – 7.62 (m, 2H), 7.62 – 7.58 (m, 4H), 7.47 – 7.42 (m, 2H), 7.37 (td, *J* = 7.2, 1.2 Hz, 1H), 5.49 (d, *J* = 2.5 Hz, 1H), 4.99 (d, *J* = 2.5 Hz, 1H).

1-(1-Azidovinyl)-4-(trifluoromethyl)benzene (2b)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.68 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 5.54 (d, J = 2.7 Hz, 1H), 5.07 (d, J = 2.7 Hz, 1H).

1-(1-Azidovinyl)-3-chlorobenzene (2c)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.52 (s, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.24 (m, 2H), 5.44 – 5.42 (m, 1H), 4.97 – 4.95 (m, 1H).

1-(1-Azidovinyl)-3-bromobenzene (2d)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (t, *J* = 1.9 Hz, 1H), 7.48 (tdd, *J* = 7.9, 1.9, 1.0 Hz, 2H), 7.22 (t, *J* = 7.9 Hz, 1H), 5.46 (d, *J* = 2.7 Hz, 1H), 4.99 (d, *J* = 2.7 Hz, 1H). **1-(1-Azidovinyl)-4-(***tert*-butyl)benzene (2e)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.51 (m, 2H), 7.46 – 7.39 (m, 2H), 5.44 (d, *J* = 2.3 Hz, 1H), 4.96 (d, *J* = 2.3 Hz, 1H), 1.37 (s, 9H).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 2H), 7.43 – 7.33 (m, 3H), 5.45 (d, J = 2.4 Hz, 1H), 4.97 (d, J = 2.4 Hz, 1H).

1-(1-Azidovinyl)-4-methylbenzene (2g)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.47 (m, 2H), 7.22 – 7.18 (m, 2H), 5.43 (d, *J* = 2.3 Hz, 1H), 4.95 (d, *J* = 2.3 Hz, 1H), 2.40 (s, 3H).

1-(1-Azidovinyl)-4-chlorobenzene (2h)

¹H NMR (600 MHz, Chloroform-*d*) δ 7.52 – 7.47 (m, 2H), 7.35 – 7.31 (m, 2H), 5.44 – 5.43 (m, 1H), 5.00 – 4.96 (m, 1H).

Methyl 4-(1-azidovinyl)benzoate (2i)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.98 (m, 2H), 7.66 – 7.59 (m, 2H), 5.57 (d, *J* = 2.7 Hz, 1H), 5.07 (d, *J* = 2.7 Hz, 1H), 3.92 (s, 3H).

2-(4-(1-Azidovinyl)phenyl)acetonitrile (2j)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.46 (d, *J* = 2.6 Hz, 1H), 4.99 (d, *J* = 2.6 Hz, 1H), 3.76 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.4, 134.3, 130.9, 128.2, 126.4, 117.6, 98.5, 23.5.

HR-MS (ESI-TOF) calcd for $C_{10}H_7N_4^-$ [M-H]⁻ 183.0676; found 183.0669.

(4-(1-azidovinyl)phenyl)methanol (2k)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 5.43 (d, *J* = 2.4 Hz, 1H), 4.96 (d, *J* = 2.4 Hz, 1H), 4.70 (d, *J* = 4.0 Hz, 2H).

1-(1-Azidovinyl)-3-fluorobenzene (2l)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.24 (m, 3H), 7.04 (tdd, *J* = 8.1, 2.6, 1.4

Hz, 1H), 5.47 (d, *J* = 2.6 Hz, 1H), 5.00 (d, *J* = 2.6 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.76 – -112.87 (m,1F). **1-(1-Azidovinyl)-3-methylbenzene (2m)**

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.37 (m, 2H), 7.29 (t, *J* = 3.8 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 5.44 (d, *J* = 2.4 Hz, 1H), 4.97 (d, *J* = 2.4 Hz, 1H), 2.40 (s, 3H). **1-(1-Azidovinyl)-3,5-difluorobenzene (2n)**

¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 – 7.06 (m, 2H), 6.79 (tt, *J* = 8.7, 2.3 Hz, 1H), 5.49 (d, *J* = 2.9 Hz, 1H), 5.04 (d, *J* = 2.9 Hz, 1H).

2-Hydroxy-1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione (A1)

¹H NMR (600 MHz, DMSO-d₆) δ 10.97 (brs, 1H), 8.47 (s, 2H), 8.27 – 8.22 (m, 2H), 7.79 – 7.75 (m, 2H).

5-Chloro-2-hydroxyisoindoline-1,3-dione (4b)

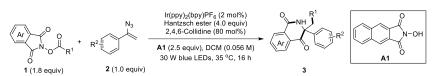
¹H NMR (400 MHz, DMSO-*d*₆) δ 10.94 (brs, 1H), 7.94 – 7.79 (m, 3H).

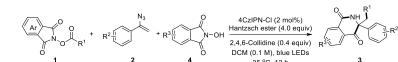
5-Bromo-2-hydroxyisoindoline-1,3-dione (4c)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.92 (brs, 1H), 8.05 – 8.01 (m, 2H), 7.76 (d, *J* = 8.3 Hz, 1H).

2-Hydroxy-5-(phenylethynyl)isoindoline-1,3-dione (4d)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.91 (brs, 1H), 7.99 – 7.94 (m, 2H), 7.89 – 7.84 (m, 1H), 7.66 – 7.60 (m, 2H), 7.50 – 7.45 (m, 3H).


4-Fluoro-2-hydroxyisoindoline-1,3-dione (4e)


¹H NMR (400 MHz, DMSO-*d*₆) δ 10.91 (brs, 1H), 7.90 – 7.84 (m, 1H), 7.70 – 7.62 (m, 2H).

IV. General Procedures

Typical Procedure A

To a Schlenk tube were added **1** (0.18 mmol, 1.8 equiv), **2** (if solid) (0.10 mmol, 1.0 equiv), **A1** (53.4 mg, 0.25 mmol, 2.5 equiv), $Ir(ppy)_2(bpy)PF_6$ (1.6 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.8 mL), 2,4,6-collidine (9.7 mg, 0.08 mmol, 80 mol%) and **2** (if liquid) (0.10 mmol, 1.0 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring until TLC indicated the complete consumption of **2** (typically 16 h). The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and-concentrated under reduced pressure. The residue was purified by column chromatography to afford the pure product (**3a-3p**). *Typical Procedure B*

To a Schlenk tube were added 1 (0.18 mmol, 1.8 equiv), 2 (if solid) (0.10 mmol, 1.0 equiv), 4 (0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and backfilled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%) and 2 (if liquid) (0.10 mmol, 1.0 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring until TLC indicated the complete consumption of 2 (typically 12 h). The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product (3).

Reaction Setup

The reaction was carried out using the above setup with two 30W of blue LEDs (LED DRIVER YJ-30W, $\lambda = 460-470$ nm). There is 2.5 cm distance between the reactor and LEDs at 35 °C, which is monitored by a thermometer.

V. Characterization of Products

3-([1,1'-Biphenyl]-4-yl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3a)

Following typical procedure A, the reaction of **1a** (44.5 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3a** as white solid (24.1 mg, 63% yield).

Following typical procedure B, the reaction of **1m** (47.0 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3a** as white solid (30.0 mg, 78% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (dd, J = 7.8, 1.3 Hz, 1H), 8.03 (dd, J = 7.8, 1.3 Hz, 1H), 7.79 (td, J = 7.6, 1.3 Hz, 1H), 7.68 (td, J = 7.6, 1.3 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.55 – 7.47 (m, 4H), 7.43 – 7.37 (m, 2H), 7.36 – 7.29 (m, 1H), 6.58 (brs, 1H), 3.13 (d, J = 14.9 Hz, 1H), 1.88 (d, J = 14.9 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.5, 162.7, 141.3, 141.1, 140.2, 135.0, 133.3, 131.1, 131.0, 128.9, 128.5, 127.70, 127.68, 127.4, 127.2, 126.1, 70.9, 52.8, 32.0, 31.7.
¹³C Quantitative-NMR (151 MHz, Chloroform-*d*) δ 192.4 (1C), 162.6 (1C), 141.3 (1C), 141.2 (1C), 140.2 (1C), 135.0 (1C), 133.4 (1C), 131.1 (1C), 131.0 (1C), 128.9 (2C), 128.5 (1C), 127.72 (1C), 127.69 (2C), 127.4 (1C), 127.2 (2C), 126.0 (2C), 70.9 (1C), 52.8 (1C), 32.0 (1C), 31.7 (3C).

HR-MS (ESI-TOF) calcd for C₂₆H₂₅NNaO₂⁺ [M+Na]⁺ 406.1778 found 406.1780. **3-([1,1'-Biphenyl]-4-yl)-3-(2,2-dimethyl-4-phenylbutyl)-2,3-dihydroisoquinoline-1,4-dione (3b)**

Following typical procedure A, the reaction of **1b** (60.7 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3b** as white solid (24.1 mg, 51% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.03 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.79 (td, *J* = 7.6, 1.4 Hz, 1H), 7.68 (td, *J* = 7.6, 1.4 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.55 – 7.49 (m, 4H), 7.44 – 7.38 (m, 2H), 7.36 – 7.31 (m, 1H), 7.28 – 7.22 (m, 2H), 7.19 – 7.12 (m, 3H), 6.57 (brs, 1H), 3.19 (d, *J* = 14.9 Hz, 1H), 2.68 – 2.59 (m, 2H), 1.97 (d, *J* = 14.9 Hz, 1H), 1.66 – 1.59 (m, 2H), 1.13 (s, 3H), 1.00 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.4, 162.7, 142.8, 141.3, 141.2, 140.2, 135.1, 133.4, 131.0, 130.9, 129.0, 128.5, 128.4, 127.7, 127.4, 127.2, 126.1, 125.8, 70.8, 50.9, 47.1, 34.6, 30.7, 29.4, 28.4.

¹³C Quantitative-NMR (151 MHz, Chloroform-*d*) δ 192.4 (1C), 162.6 (1C), 142.8 (1C), 141.3 (1C), 141.2 (1C), 140.2 (1C), 135.1 (1C), 133.4 (1C), 131.0 (1C), 130.9 (1C), 129.0 (2C), 128.5 (3C), 128.4 (2C), 127.7 (3C), 127.4 (1C), 127.2 (2C), 126.0 (2C), 125.8 (1C), 70.8 (1C), 50.9 (1C), 47.1 (1C), 34.6 (1C), 30.7 (1C), 29.4 (1C), 28.4 (1C). HR-MS (ESI-TOF) calcd for C₃₃H₃₁NNaO₂⁺ [M+Na]⁺ 496.2247; found 496.2249.

3-([1,1'-Biphenyl]-4-yl)-3-((1-methylcyclohexyl)methyl)-2,3-dihydroisoquinoline-1,4-dione (3c)

Following typical procedure A, the reaction of 1c (51.7 mg, 0.18 mmol), 2a (22.1 mg, 0.10 mmol) for 16 h afforded 3c as white solid (22.2 mg, 52% yield).

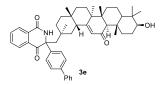
¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (dd, J = 7.8, 1.3 Hz, 1H), 8.04 (dd, J = 7.8, 1.3 Hz, 1H), 7.78 (td, J = 7.6, 1.4 Hz, 1H), 7.68 (td, J = 7.6, 1.4 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.55 – 7.47 (m, 4H), 7.44 – 7.36 (m, 2H), 7.36 – 7.28 (m, 1H), 6.84 (brs, 1H), 3.06 (d, J = 14.9 Hz, 1H), 1.96 (d, J = 14.9 Hz, 1H), 1.53 – 1.60 (m, 1H), 1.48 – 1.35 (m, 6H), 1.31 – 1.19 (m, 3H), 0.96 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.5, 162.6, 141.5, 141.1, 140.2, 135.0, 133.4, 131.0, 130.9, 128.9, 128.5, 127.71, 127.68, 127.4, 127.2, 126.1, 70.8, 53.3, 40.0, 39.7, 34.6, 26.2, 24.9, 22.1, 21.9.

HR-MS (ESI-TOF) calcd for C₂₉H₂₉NNaO₂⁺ [M+Na]⁺ 446.2091; found 446.2090.

tert-Butyl 4-((3-([1,1'-biphenyl]-4-yl)-1,4-dioxo-1,2,3,4-tetrahydroisoquinolin-3-yl)methyl)-4-methylpiperidine-1-carboxylate (3d)

Following typical procedure A, the reaction of **1d** (69.8 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3d** as white solid (26.0 mg, 50% yield).


¹H NMR (400 MHz, Chloroform-*d*) δ 8.31 (dd, J = 7.8, 1.3 Hz, 1H), 8.05 (dd, J = 7.8, 1.3 Hz, 1H), 7.80 (td, J = 7.6, 1.4 Hz, 1H), 7.69 (td, J = 7.6, 1.4 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.55 – 7.47 (m, 4H), 7.43 – 7.37 (m, 2H), 7.36 – 7.29 (m, 1H), 7.00 (brs, 1H), 3.79 – 3.64 (m, 2H), 3.11 (d, J = 14.9 Hz, 1H), 3.05 – 2.94 (m, 2H), 1.94 (d, J = 14.9 Hz, 1H), 1.65 – 1.51 (m, 3H) 1.42 (s, 9H), 1.29 – 1.23 (m, 1H), 1.02 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.3, 162.6, 155.0, 141.4, 141.1, 140.1, 135.2, 133.6, 130.9, 130.8, 129.0, 128.6, 127.8, 127.5, 127.2, 126.0, 79.6, 70.6, 53.0, 38.8, 38.6, 33.1, 28.6, 23.2.

HR-MS (ESI-TOF) calcd for C₃₃H₃₆N₂NaO₄⁺ [M+Na]⁺ 547.2567; found 547.2569.

3-([1,1'-Biphenyl]-4-yl)-3-(((2*S*,4*aR*,6*aS*,6*bR*,10*S*,12*aS*,12*bR*,14*bS*)-10-hydroxy-2,4*a*,6*a*,6*b*,9,9,12*a*-heptamethyl-13-oxo-

1,2,3,4,4*a*,5,6,6*a*,6*b*,7,8,8*a*,9,10,11,12,12*a*,12*b*,13,14*b*-icosahydropicen-2-yl)methyl)-2,3-dihydroisoquinoline-1,4-dione (3e)

Following typical procedure A, the reaction of 1e (110.7 mg, 0.18 mmol), 2a (22.1 mg, 0.10 mmol) for 16 h afforded 3e as white solid (32.2 mg, 44% yield, dr = 1:1:1:2).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.31 (dd, J = 7.8, 1.2 Hz, 1H), 8.03 (ddd, J = 7.8, 5.7, 1.2 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.68 (dtd, J = 12.4, 7.6, 1.3 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.53 – 7.46 (m, 4H), 7.39 (td, J = 7.8, 2.7 Hz, 2H), 7.34 – 7.30 (m, 1H), 6.84 (brs, 1H), 5.47 (s, 1H), 3.22 (dt, J = 10.5, 4.7 Hz, 1H), 3.07 (d, J = 14.9 Hz, 1H), 2.78 – 2.74 (m, 1H), 2.25 (s, 1H), 2.15 – 2.08 (m, 1H), 2.03 – 1.93 (m, 1H), 1.85 (d, J = 14.9 Hz, 1H), 1.67 – 1.53 (m, 4H), 1.47 – 1.35 (m, 3H), 1.29 – 1.18 (m, 4H), 1.11 (d, J = 2.1 Hz, 6H), 1.08 (s, 6H), 1.00 (s, 3H), 0.97 (s, 3H), 0.96 – 0.85 (m, 3H), 0.81 (s, 6H), 0.70 – 0.61 (m, 1H).

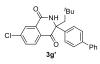
¹³C NMR (151 MHz, Chloroform-*d*) δ 200.2, 192.2, 169.6, 162.6, 141.3, 141.1, 140.1, 135.2, 133.4, 130.9, 129.0, 128.6, 128.5, 128.3, 127.7, 127.4, 127.1, 126.0, 78.9, 70.6, 61.9, 55.3, 55.0, 47.1, 45.6, 44.6, 43.4, 39.2, 37.3, 35.9, 35.5, 34.4, 33.6, 32.8, 32.3, 28.7, 28.2, 27.4, 26.42, 26.36, 23.7, 23.2, 22.5, 18.8, 17.6, 16.4, 15.7.

HR-MS (ESI-TOF) calcd for C₅₁H₆₁NNaO₄⁺ [M+Na]⁺ 774.4493; found 774.4496. **3-([1,1'-Biphenyl]-4-yl)-3-(2-ethylbutyl)-2,3-dihydroisoquinoline-1,4-dione (3f)**

Following typical procedure A, the reaction of **1f** (47.0 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol), 4CzIPN (1.6 mg, 0.002 mmol), DIPEA (10.4 mg, 0.08 mmol) in DCM (1.0 mL) for 16 h afforded **3f** as white solid (8.0 mg, 20% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.30 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.55 – 7.49 (m, 4H), 7.40 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 6.63 (brs, 1H), 2.79 (dd, J = 14.6, 7.0 Hz, 1H), 2.00 (dd, J = 14.6, 5.0 Hz, 1H), 1.56 – 1.48 (m, 1H), 1.36 – 1.30 (m, 2H), 1.25 – 1.19 (m, 2H), 0.86 – 0.78 (m, 6H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.8, 163.2, 141.2, 140.5, 140.2, 135.1, 133.4, 131.12, 131.10, 129.0, 128.5, 127.74, 127.69, 127.3, 127.2, 126.2, 70.7, 43.9, 36.8, 26.2, 26.0, 10.7, 10.2.


HR-MS (ESI-TOF) calcd for C₂₇H₂₈NO₂⁺ [M+H]⁺ 398.2115; found 398.2114.

3-([1,1'-Biphenyl]-4-yl)-6-chloro-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3g)

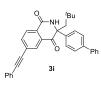
Following typical procedure A, the reaction of **1g** (50.6 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3g** and **3g'** as white solid (28.8 mg, 69% yield, rr = 1:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 2.2 Hz, 1H), 7.72 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.58 – 7.48 (m, 6H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.37 – 7.31 (m, 1H), 6.74 (brs, 1H), 3.10 (d, *J* = 14.9 Hz, 1H), 1.87 (d, *J* = 14.9 Hz, 1H), 1.00 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 191.4, 161.9, 141.4, 140.7, 140.3, 140.1, 135.1, 132.1, 130.4, 129.3, 129.0, 127.8, 127.3, 127.2, 126.0, 71.3, 52.6, 31.9, 31.7.
HR-MS (ESI-TOF) calcd for C₂₆H₂₅ClNO₂⁺ [M+H]⁺ 418.1568; found 418.1569. **3-([1,1'-Biphenyl]-4-yl)-7-chloro-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione**

(3g')

¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, *J* = 2.1 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.62 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.59 – 7.48 (m, 6H), 7.44 – 7.37 (m, 2H), 7.37 – 7.30 (m, 1H), 6.77 (brs, 1H), 3.11 (d, *J* = 14.9 Hz, 1H), 1.90 (d, *J* = 14.9 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 191.4, 161.5, 142.1, 141.4, 140.9, 140.1, 133.7, 132.5, 129.24, 129.19, 129.0, 128.6, 127.8, 127.2, 126.0, 71.0, 52.6, 32.0, 31.7.
HR-MS (ESI-TOF) calcd for C₂₆H₂₅ClNO₂⁺ [M+H]⁺ 418.1568; found 418.1570. **3-([1,1'-Biphenyl]-4-yl)-6-bromo-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione** (3h)

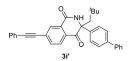

Following typical procedure A, the reaction of **1h** (58.5 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3h** and **3h'** as white solid (33.2 mg, 72% yield, rr = 1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 8.3 Hz, 1H), 8.14 (d, *J* = 2.0 Hz, 1H), 7.89 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.57 – 7.48 (m, 6H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 6.55 (brs, 1H), 3.11 (d, *J* = 14.9 Hz, 1H), 1.89 (d, *J* = 14.9 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.2, 161.9, 141.5, 140.7, 140.1, 138.1, 132.1, 130.4, 130.3, 129.7, 129.0, 128.7, 127.84, 127.82, 127.2, 126.0, 71.3, 52.6, 32.0, 31.7. HR-MS (ESI-TOF) calcd for C₂₆H₂₄BrNNaO₂⁺ [M+Na]⁺ 484.0883; found 484.0884. **3-([1,1'-Biphenyl]-4-yl)-7-bromo-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione** (3h')

¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 2.0 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.80 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.58 – 7.48 (m, 6H), 7.44 – 7.38 (m, 2H), 7.37 – 7.31 (m, 1H), 6.58 (brs, 1H), 3.11 (d, *J* = 14.9 Hz, 1H), 1.89 (d, *J* = 14.9 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.6, 161.3, 141.4, 140.8, 140.1, 136.7, 132.3, 131.6, 130.8, 129.6, 129.1, 129.0, 127.8, 127.2, 126.0, 71.0, 52.6, 32.0, 31.7.

HR-MS (ESI-TOF) calcd for C₂₆H₂₄BrNNaO₂⁺ [M+Na]⁺ 484.0883; found 484.0884. **3-([1,1'-Biphenyl]-4-yl)-3-neopentyl-6-(phenylethynyl)-2,3-dihydroisoquinoline-1,4-dione (3i)**


Following typical procedure A, the reaction of **1i** (62.5 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3i** and **3i'** as white solid (32.0 mg, 66% yield, rr = 1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.30 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 1.8 Hz, 1H), 7.88 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.60 - 7.56 (m, 2H), 7.55 - 7.48 (m, 6H), 7.43 - 7.38

(m, 2H), 7.39 – 7.30 (m, 4H), 6.66 (brs, 1H), 3.13 (d, *J* = 14.9 Hz, 1H), 1.90 (d, *J* = 14.9 Hz, 1H), 1.03 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.8, 162.2, 141.3, 141.0, 140.2, 137.4, 132.0, 131.0, 130.4, 129.9, 129.2, 128.98, 128.95, 128.7, 128.6, 127.78, 127.76, 127.2, 126.0, 122.4, 93.8, 87.7, 71.1, 52.6, 32.0, 31.7.

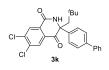
HR-MS (ESI-TOF) calcd for $C_{34}H_{30}NO_2^+$ [M+H]⁺ 484.2271; found 484.2271.

3-([1,1'-Biphenyl]-4-yl)-3-neopentyl-7-(phenylethynyl)-2,3-dihydroisoquinoline-1,4-dione (3i')

¹H NMR (600 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.58 – 7.49 (m, 6H), 7.43 – 7.35 (m, 5H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.20 (brs, 1H), 3.14 (d, *J* = 14.8 Hz, 1H), 1.96 (d, *J* = 14.8 Hz, 1H), 1.04 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.8, 162.2, 141.2, 141.2, 140.2, 135.8, 132.0, 131.5, 131.2, 130.6, 129.8, 129.3, 128.9, 128.6, 127.7, 127.5, 127.2, 126.1, 122.4, 94.9, 88.1, 70.9, 52.8, 32.0, 31.7.

HR-MS (ESI-TOF) calcd for $C_{34}H_{29}NNaO_2^+$ [M+Na]⁺ 506.2091; found 506.2092. 3-([1,1'-Biphenyl]-4-yl)-6,7-difluoro-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3j)


Following typical procedure A, the reaction of **1j** (50.9 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3j** as white solid (28.9 mg, 69% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (dd, *J* = 9.9, 7.3 Hz, 1H), 7.81 (dd, *J* = 9.6, 7.4 Hz, 1H), 7.57 – 7.49 (m, 6H), 7.45 – 7.37 (m, 2H), 7.37 – 7.32 (m, 1H), 6.73 (brs, 1H), 3.10 (d, *J* = 14.9 Hz, 1H), 1.90 (d, *J* = 14.9 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 190.4, 160.8, 154.9 (dd, J = 261.1, 13.2 Hz), 153.9 (dd, J = 259.5, 13.5 Hz), 141.5, 140.6, 140.0, 129.3 (dd, J = 6.7, 3.5 Hz), 129.0, 128.8 (dd, J = 5.5, 3.6 Hz), 127.9, 127.2, 125.9, 118.0 (d, J = 19.7 Hz), 116.7 (d, J = 18.9 Hz), 71.3, 52.7, 32.0, 31.7.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -124.7 (ddd, *J* = 20.9, 10.0, 7.4 Hz, 1F), -127.7 (ddd, *J* = 20.8, 9.7, 7.2 Hz,1F).

HR-MS (ESI-TOF) calcd for C₂₆H₂₄F₂NO₂⁺ [M+H]⁺ 420.1770; found 420.1769. **3-([1,1'-Biphenyl]-4-yl)-6,7-dichloro-3-neopentyl-2,3-dihydroisoquinoline-1,4dione (3k)**

Following typical procedure A, the reaction of **1k** (56.7 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3k** as white solid (27.5 mg, 61% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 8.08 (s, 1H), 7.56 – 7.49 (m, 6H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 6.88 (brs, 1H), 3.10 (d, *J* = 14.9 Hz, 1H), 1.91 (d, *J* = 14.9 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 190.6, 161.0, 141.5, 140.5, 140.3, 140.0, 138.7, 130.7, 130.3, 130.0, 129.4, 129.0, 127.88, 127.85, 127.2, 125.9, 71.4, 52.6, 32.0, 31.7. HR-MS (ESI-TOF) calcd for C₂₆H₂₄Cl₂NO₂⁺ [M+H]⁺ 452.1179; found 452.1180.

3-([1,1'-Biphenyl]-4-yl)-5-fluoro-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3l)

Following typical procedure A, the reaction of **11** (47.7 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **31** and **31'** as white solid (18.0 mg, 45% yield, rr = 1:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.67 – 7.60 (m, 1H), 7.60 – 7.55 (m, 2H), 7.55 – 7.49 (m, 4H), 7.49 – 7.42 (m, 1H), 7.43 – 7.38 (m, 2H), 7.36 – 7.30 (m, 1H), 6.44 (brs, 1H), 3.05 (d, *J* = 14.9 Hz, 1H), 1.88 (d, *J* = 14.9 Hz, 1H), 1.02 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.5 (d, *J* = 3.4 Hz), 161.9 (d, *J* = 266.6 Hz), 160.2 (d, *J* = 3.5 Hz), 141.4, 140.7, 140.1, 134.7 (d, *J* = 9.5 Hz), 132.8, 129.0, 127.80, 127.78, 127.2, 126.0, 123.9 (d, *J* = 5.6 Hz), 123.8 (d, *J* = 13.0 Hz), 118.4 (d, *J* = 4.4 Hz), 70.8, 52.6, 31.9, 31.8.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -109.86 – -109.92 (m, 1F).

HR-MS (ESI-TOF) calcd for C₂₆H₂₅FNO₂⁺ [M+H]⁺ 402.1864; found 402.1862.

3-([1,1'-Biphenyl]-4-yl)-8-fluoro-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3l')

¹H NMR (600 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 7.8 Hz, 1H), 7.73 (td, *J* = 8.0, 4.4 Hz, 1H), 7.57 – 7.49 (m, 6H), 7.43 – 7.38 (m, 2H), 7.38 – 7.31 (m, 2H), 6.68 (brs, 1H), 3.07 (d, *J* = 14.9 Hz, 1H), 1.87 (d, *J* = 14.9 Hz, 1H), 1.03 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 189.3 (d, J = 1.3 Hz), 161.6 (d, J = 3.2 Hz), 161.3 (d, J = 269.3 Hz), 141. 4, 140.6, 140.1, 136.3 (d, J = 9.8 Hz), 132.7, 129.0, 127.81,

127.79, 127.2, 126.0, 124.7 (d, *J* = 3.7 Hz), 122.0 (d, *J* = 21.4 Hz), 119.2 (d, *J* = 5.4 Hz), 71.2, 52.0, 31.9, 31.8.

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -110.87 – -110.92 (m, 1F)

HR-MS (ESI-TOF) calcd for $C_{26}H_{25}FNO_2^+$ [M+H]⁺ 402.1864; found 402.1862.

3-Neopentyl-3-(4-(trifluoromethyl)phenyl)-2,3-dihydroisoquinoline-1,4-dione (3m)

Following typical procedure A, the reaction of **1a** (44.5 mg, 0.18 mmol), **2b** (21.3 mg, 0.10 mmol) for 16 h afforded **3m** as white solid (19.0 mg, 51% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.79 (tt, J = 7.6, 1.4 Hz, 1H), 7.72 – 7.64 (m, 3H), 7.58 – 7.53 (m, 2H), 7.10 (brs, 1H), 3.07 (d, J = 14.8 Hz, 1H), 1.87 (d, J = 14.8 Hz, 1H), 1.00 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.1, 162.6, 146.3, 135.3, 133.6, 131.0, 130.8, 130.5 (q, *J* = 32.7 Hz), 128.6, 127.4, 126.1, 126.0 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 272.4 Hz), 70.9, 52.9, 32.1, 31.7.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.73 (s, 3F).

HR-MS (ESI-TOF) calcd for C₂₁H₂₁F₃NO₂⁺ [M+H]⁺ 376.1519; found 376.1521.

3-(3-Chlorophenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3n)

Following typical procedure A, the reaction of **1a** (44.5 mg, 0.18 mmol), **2c** (17.9 mg, 0.10 mmol) for 16 h afforded **3n** as white solid (17.7 mg, 52% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.02 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.79 (td, *J* = 7.6, 1.4 Hz, 1H), 7.69 (td, *J* = 7.6, 1.4 Hz, 1H), 7.54 – 7.51 (m, 1H), 7.45 – 7.38 (m, 1H), 7.25 – 7.19 (m, 2H), 6.74 (brs, 1H), 3.03 (d, *J* = 14.8 Hz, 1H), 1.83 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.0, 162.4, 144.4, 135.2, 135.1, 133.5, 130.9, 130.8, 130.2, 128.6, 128.5, 127.4, 126.0, 123.8, 70.6, 52.9, 32.0, 31.7.

HR-MS (ESI-TOF) calcd for C₂₀H₂₀ClNNaO₂⁺ [M+Na]⁺ 364.1075; found 364.1075.

3-(3-Bromophenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (30)

Following typical procedure A, the reaction of **1a** (44.5 mg, 0.18 mmol), **2d** (22.3 mg, 0.10 mmol) for 16 h afforded **3o** as white solid (20.0 mg, 52% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, J = 7.8, 1.3 Hz, 1H), 8.02 (dd, J = 7.8,

1.3 Hz, 1H), 7.80 (td, *J* = 7.6, 1.4 Hz, 1H), 7.72 – 7.65 (m, 2H), 7.46 (ddd, *J* = 8.1, 1.9, 1.0 Hz, 1H), 7.38 (ddd, *J* = 8.1, 1.9, 1.0 Hz, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 6.65 (brs, 1H), 3.02 (d, *J* = 14.8 Hz, 1H), 1.82 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.0, 162.3, 144.6, 135.2, 133.5, 131.4, 130.9, 130.8, 130.5, 128.8, 128.6, 127.4, 124.2, 123.3, 70.6, 53.0, 32.0, 31.7.

HR-MS (ESI-TOF) calcd for $C_{20}H_{20}BrNNaO_2^+$ [M+Na]⁺ 408.0570; found 408.0572.

3-(4-(tert-Butyl)phenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3p)

Following typical procedure A, the reaction of **1a** (44.5 mg, 0.18 mmol), **2e** (20.1 mg, 0.10 mmol), HOAc (4.8 mg, 0.08 mmol) for 16 h afforded **3p** as white solid (13.1 mg, 36% yield).

Following typical procedure B, the reaction of **1m** (47.0 mg, 0.18 mmol), **2e** (20.1 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3p** as white solid (15.2 mg, 42% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.30 (d, *J* = 7.8 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.32 – 7.28 (m, 2H), 6.92 (brs, 1H), 3.10 (d, *J* = 14.8 Hz, 1H), 1.84 (d, *J* = 14.8 Hz, 1H), 1.24 (s, 9H), 0.99 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.6, 162.6, 151.2, 139.4, 134.9, 133.2, 131.2, 131.0, 128.5, 127.3, 126.0, 125.2, 70.8, 52.8, 34.5, 31.9, 31.7, 31.3.

HR-MS (ESI-TOF) calcd for C₂₄H₂₉NNaO₂⁺ [M+Na]⁺ 386.2091; found 386.2093.

3-([1,1'-Biphenyl]-4-yl)-3-(2,2-dimethylbutyl)-2,3-dihydroisoquinoline-1,4-dione (3q)

Following typical procedure B, the reaction of **1n** (49.5 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3q** as white solid (27.0 mg, 68% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.32 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.55 – 7.49 (m, 4H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.35 – 7.30 (m, 1H), 6.80 (brs, 1H), 3.09 (d, *J* = 15.0 Hz, 1H), 1.91 (d, *J* = 15.0 Hz, 1H), 1.36 (q, *J* = 7.4 Hz, 2H), 1.01 (s, 3H), 0.91 (s, 3H), 0.88 (t, *J* = 7.4 Hz, 3H).

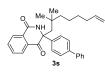
¹³C NMR (151 MHz, Chloroform-*d*) δ 192.5, 162.6, 141.4, 141.2, 140.2, 135.0, 133.4,

131.1, 131.0, 128.9, 128.5, 127.71, 126.69, 127.4, 127.2, 126.1, 70.8, 50.7, 37.1, 34.5, 28.9, 27.9, 8.6.

HR-MS (ESI-TOF) calcd for $C_{27}H_{27}NNaO_2^+$ [M+Na]⁺ 420.1934; found 420.1938.

3-([1,1'-Biphenyl]-4-yl)-3-(3,3,3-trifluoro-2,2-dimethylpropyl)-2,3-

dihydroisoquinoline-1,4-dione (3r)


Following typical procedure B, the reaction of **10** (56.7 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3r** as white solid (21.9 mg, 50% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.31 (d, *J* = 7.8 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 6.77 (brs, 1H), 3.41 (d, *J* = 15.3 Hz, 1H), 2.11 (d, *J* = 15.3 Hz, 1H), 1.32 (s, 3H), 1.13 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 191.7, 162.8, 141.7, 140.2, 140.0, 135.4, 133.7, 130.8, 130.7, 129.04 (q, *J* = 283.3 Hz), 129.00, 128.7, 128.0, 127.9, 127.6, 127.2, 126.0, 69.9, 43.8, 41.2 (q, *J* = 24.5 Hz), 22.8 (q, *J* = 2.0 Hz), 21.9 (q, *J* = 2.0 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -79.12 (s, 3F).

HR-MS (ESI-TOF) calcd for C₂₆H₂₂F₃NNaO₂⁺ [M+Na]⁺ 460.1495; found 460.1496. **3-([1,1'-Biphenyl]-4-yl)-3-(2,2-dimethyloct-7-en-1-yl)-2,3-dihydroisoquinoline-1,4-dione (3s)**

Following typical procedure B, the reaction of **1p** (59.3 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3s** as white solid (27.1 mg, 60% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.32 (d, *J* = 7.8 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.79 (t, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.55 – 7.47 (m, 4H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 6.53 (brs, 1H), 5.78 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 4.98 (d, *J* = 17.0, Hz, 1H), 4.93 (d, *J* = 10.2 Hz, 1H), 3.09 (d, *J* = 14.9 Hz, 1H), 2.03 (q, *J* = 7.5 Hz, 2H), 1.90 (d, *J* = 14.9 Hz, 1H), 1.34 – 1.27 (m, 6H), 1.02 (s, 3H), 0.91 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.3, 162.4, 141.2, 141.1, 140.1, 138.9, 134.9, 133.3, 130.9, 130.8, 128.8, 128.4, 127.61, 127.59, 127.3, 127.1, 125.9, 114.4, 70.7, 50.9,

44.7, 34.3, 33.7, 29.6, 29.3, 28.4, 23.5.

HR-MS (ESI-TOF) calcd for $C_{31}H_{33}NNaO_2^+$ [M+Na]⁺ 474.2404; found 474.2406. 3-([1,1'-Biphenyl]-4-yl)-3-(5-(2,5-dimethylphenoxy)-2,2-dimethylpentyl)-2,3-dihydroisoquinoline-1,4-dione (3t)

Following typical procedure B, the reaction of **1q** (73.7 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3t** as white solid (31.3 mg, 59% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (dd, J = 7.8, 1.3 Hz, 1H), 8.05 (dd, J = 7.8, 1.3 Hz, 1H), 7.76 (td, J = 7.6, 1.4 Hz, 1H), 7.70 – 7.61 (m, 3H), 7.56 – 7.48 (m, 4H), 7.44 – 7.38 (m, 2H), 7.37 – 7.30 (m, 1H), 7.24 (s, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.66 (t, J = 7.5, Hz, 1H), 6.58 (brs, 1H), 3.89 (t, J = 6.4 Hz, 2H), 3.17 (d, J = 14.9 Hz, 1H), 2.29 (s, 3H), 2.16 (s, 3H), 2.00 (d, J = 14.9 Hz, 1H), 1.90 – 1.81 (m, 2H), 1.56 – 1.47 (m, 2H), 1.12 (s, 3H), 0.99 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.5, 162.8, 157.1, 141.4, 141.2, 140.2, 136.5, 135.0, 133.4, 131.1, 130.9, 130.4, 128.9, 128.5, 127.7, 127.4, 127.2, 126.1, 123.7, 120.8, 112.1, 70.8, 68.4, 50.8, 41.3, 34.3, 28.3, 27.0, 24.5, 21.5, 15.9.

HR-MS (ESI-TOF) calcd for C₃₆H₃₇NNaO₃⁺ [M+Na]⁺ 554.2666; found 554.2669.

3-Neopentyl-3-phenyl-2,3-dihydroisoquinoline-1,4-dione (3u)

Following typical procedure B, the reaction of 1m (47.0 mg, 0.18 mmol), 2f (14.5 mg, 0.10 mmol), 4a (40.8 mg, 0.25 mmol) for 12 h afforded 3u as white solid (15.4 mg, 50% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, J = 7.8, 1.3 Hz, 1H), 8.00 (dd, J = 7.8, 1.3 Hz, 1H), 7.77 (td, J = 7.6, 1.4 Hz, 1H), 7.66 (td, J = 7.6, 1.4 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.33 – 7.27 (m, 2H), 7.26 – 7.21 (m, 1H), 6.52 (brs, 1H), 3.09 (d, J = 14.8 Hz, 1H), 1.84 (d, J = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.4, 162.6, 142.3, 135.0, 133.4, 131.0, 130.9, 129.0, 128.5, 128.3, 127.4, 125.5, 71.0, 52.7, 31.9, 31.7.

HR-MS (ESI-TOF) calcd for $C_{20}H_{21}NNaO_2^+$ [M+Na]⁺ 330.1465; found 330.1465.

3-Neopentyl-3-(*p*-tolyl)-2,3-dihydroisoquinoline-1,4-dione (3v)

Following typical procedure B, the reaction of 1m (47.0 mg, 0.18 mmol), 2g (15.9 mg, 0.10 mmol), 4a (40.8 mg, 0.25 mmol) for 12 h afforded 3v as white solid (14.0 mg, 44% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.00 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.76 (td, *J* = 7.6, 1.4 Hz, 1H), 7.66 (td, *J* = 7.6, 1.4 Hz, 1H), 7.43 – 7.34 (m, 2H), 7.13 – 7.08 (m, 2H), 6.50 (brs, 1H), 3.07 (d, *J* = 14.8 Hz, 1H), 2.27 (s, 3H), 1.81 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 192.5, 162.6, 139.4, 138.2, 134.9, 133.3, 131.02, 130.95, 129.7, 128.4, 127.4, 125.4, 70.8, 52.6, 31.9, 31.7, 21.0.

HR-MS (ESI-TOF) calcd for C₂₁H₂₃NNaO₂⁺ [M+Na]⁺ 344.1621; found 344.1622.

3-(4-Chlorophenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3w)

Following typical procedure B, the reaction of **1m** (47.0 mg, 0.18 mmol), **2h** (17.9 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3w** as white solid (22.9 mg, 67% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.01 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.79 (td, *J* = 7.6, 1.4 Hz, 1H), 7.69 (td, *J* = 7.6, 1.4 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.29 – 7.25 (m, 2H), 6.79 (s, 1H), 3.04 (d, *J* = 14.8 Hz, 1H), 1.84 (d, *J* = 14.8 Hz, 1H), 1.00 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.2, 162.5, 140.9, 135.2, 134.5, 133.5, 131.0, 130.8, 129.1, 128.6, 127.4, 127.1, 70.6, 52.7, 32.0, 31.7.

HR-MS (ESI-TOF) calcd for C₂₀H₂₁ClNO₂⁺ [M+H]⁺ 342.1255; found 342.1256.

Methyl 4-(3-neopentyl-1,4-dioxo-1,2,3,4-tetrahydroisoquinolin-3-yl)benzoate (3x)

Following typical procedure B, the reaction of 1m (47.0 mg, 0.18 mmol), 2i (20.3 mg, 0.10 mmol), 4a (40.8 mg, 0.25 mmol) for 12 h afforded 3x as white solid (17.2 mg, 47% yield).

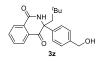
¹H NMR (600 MHz, Chloroform-*d*) δ 8.30 (d, *J* = 7.8 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.79 (t, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 6.68 (brs, 1H), 3.87 (s, 3H), 3.07 (d, *J* = 14.8 Hz, 1H), 1.87 (d, *J* = 14.8 Hz, 1H), 1.00 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.0, 166.6, 162.5, 147.1, 135.2, 133.5, 131.0, 130.8, 130.2, 130.1, 128.6, 127.4, 125.7, 71.1, 52.6, 52.4, 32.0, 31.7.

HR-MS (ESI-TOF) calcd for C₂₂H₂₄NO₄⁺ [M+H]⁺ 366.1700; found 366.1690.

2-(4-(3-Neopentyl-1,4-dioxo-1,2,3,4-tetrahydroisoquinolin-3-

yl)phenyl)acetonitrile (3y)


Following typical procedure B, the reaction of **1m** (47.0 mg, 0.18 mmol), **2j** (18.4 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3y** as white solid (18.7 mg, 54% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.00 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.79 (td, *J* = 7.6, 1.4 Hz, 1H), 7.68 (td, *J* = 7.6, 1.4 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.29 – 7.25 (m, 2H), 6.76 (brs, 1H), 3.68 (s, 2H), 3.06 (d, *J* = 14.8 Hz, 1H), 1.84 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.3, 162.5, 142.5, 135.2, 133.5, 131.0, 130.8, 130.1, 128.6, 128.6, 127.4, 126.5, 117.5, 70.8, 52.7, 32.0, 31.7, 23.2.

HR-MS (ESI-TOF) calcd for C₂₂H₂₂N₂NaO₂⁺ [M+Na]⁺ 369.1573; found 369.1574.

3-(4-(Hydroxymethyl)phenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3z)

Following typical procedure B, the reaction of 1m (47.0 mg, 0.18 mmol), 2k (17.5 mg, 0.10 mmol), 4a (40.8 mg, 0.25 mmol) for 12 h afforded 3z as white solid (17.8 mg, 53% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.00 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.78 (td, *J* = 7.6, 1.4 Hz, 1H), 7.67 (td, *J* = 7.6, 1.4 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.32 – 7.28 (m, 2H), 6.54 (s, 1H), 4.63 (s, 2H), 3.08 (d, *J* = 14.8 Hz, 1H), 1.83 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.4, 162.8, 141.5, 141.2, 135.0, 133.4, 131.0, 130.9, 128.5, 127.5, 127.3, 125.8, 70.8, 64.5, 52.7, 31.9, 31.7.

HR-MS (ESI-TOF) calcd for $C_{21}H_{24}NO_3^+$ [M+H]⁺ 338.1751; found 338.1744.

3-(3-Fluorophenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3aa)

Following typical procedure B, the reaction of **1m** (47.0 mg, 0.18 mmol), **2l** (16.3 mg, 0.10 mmol), **4a** (40.8 mg, 0.25 mmol) for 12 h afforded **3aa** as white solid (18.5 mg, 57% yield).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.02 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.79 (td, *J* = 7.6, 1.4 Hz, 1H), 7.68 (td, *J* = 7.6, 1.4 Hz, 1H), 7.33 – 7.28

(m, 1H), 7.28 – 7.26 (m, 1H), 7.26 – 7.22 (m, 1H), 6.93 (tt, *J* = 8.3, 1.3 Hz, 1H), 6.80 (brs, 1H), 3.03 (d, *J* = 14.8 Hz, 1H), 1.86 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 192.1, 163.1 (d, *J* = 247.2 Hz), 162.4, 145.0 (d, *J* = 6.5 Hz), 135.2, 133.5, 131.0, 130.8, 130.4 (d, *J* = 8.2 Hz), 128.6, 127.4, 121.1 (d, *J* = 2.8 Hz), 115.3 (d, *J* = 21.2 Hz), 113.2 (d, *J* = 23.5 Hz), 70.7 (d, *J* = 1.6 Hz), 52.8, 32.0, 31.7.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.11 – -111.25 (m, 1F).

HR-MS (ESI-TOF) calcd for C₂₀H₂₁FNO₂⁺ [M+H]⁺ 326.1551; found 326.1551.

3-Neopentyl-3-(*m*-tolyl)-2,3-dihydroisoquinoline-1,4-dione (3ab)

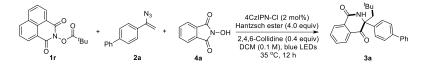
Following typical procedure B, the reaction of 1m (47.0 mg, 0.18 mmol), 2m (15.9 mg, 0.10 mmol), 4a (40.8 mg, 0.25 mmol) for 12 h afforded 3ab as white solid (13.2 mg, 41% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.30 (d, J = 7.7 Hz, 1H), 8.01 (d, J = 7.7 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.18 (t, J = 8.0 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 6.65 (brs, 1H), 3.06 (d, J = 14.9 Hz, 1H), 2.30 (s, 3H), 1.78 (d, J = 14.9 Hz, 1H), 0.97 (s, 9H).

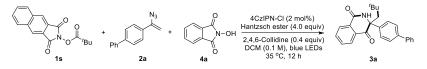
¹³C NMR (151 MHz, Chloroform-*d*) δ 192.5, 162.6, 142.3, 138.8, 134.9, 133.3, 131.1, 131.0, 129.0, 128.9, 128.5, 127.4, 126.1, 122.6, 71.0, 52.8, 31.9, 31.7, 21.8.

HR-MS (ESI-TOF) calcd for $C_{21}H_{24}NO_2^+$ [M+H]⁺ 322.1802; found 322.1802.

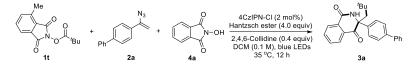
3-(3,5-Difluorophenyl)-3-neopentyl-2,3-dihydroisoquinoline-1,4-dione (3ac)


Following typical procedure B, the reaction of 1m (47.0 mg, 0.18 mmol), 2n (18.1 mg, 0.10 mmol), 4a (40.8 mg, 0.25 mmol) for 12 h afforded 3ac as white solid (22.3 mg, 65% yield).

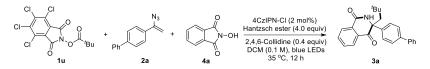
¹H NMR (600 MHz, Chloroform-*d*) δ 8.31 (dd, *J* = 7.8, 1.3 Hz, 1H), 8.03 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.81 (td, *J* = 7.6, 1.3 Hz, 1H), 7.71 (td, *J* = 7.6, 1.3 Hz, 1H), 7.10 – 7.05 (m, 2H), 6.69 (tt, *J* = 8.4, 2.3 Hz, 1H), 6.63 (brs, 1H), 2.98 (d, *J* = 14.9 Hz, 1H), 1.83 (d, *J* = 14.9 Hz, 1H), 0.99 (s, 9H).


¹³C NMR (151 MHz, Chloroform-*d*) δ 191.8, 163.24 (d, *J* = 249.6 Hz), 163.15 (d, *J* = 249.6 Hz). 162.5, 146.7 (t, *J* = 7.6 Hz), 135.3, 133.5, 131.0, 130.8, 128.6, 127.4, 109.2 (d, *J* = 6.0 Hz), 109.1 (d, *J* = 6.0 Hz), 103.7 (t, *J* = 25.6 Hz). 70.5 (t, *J* = 2.2 Hz), 52.8 (d, *J* = 13.7 Hz), 32.0, 31.6.

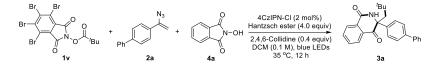
¹⁹F NMR (376 MHz, Chloroform-*d*) δ -107.68 – -107.79 (m, 2F).


HR-MS (ESI-TOF) calcd for C₂₀H₂₀F₂NO₂⁺ [M+H]⁺ 344.1457; found 344.1458. **Convergent synthesis of 3a from different NHPIs**

To a Schlenk tube were added **1r** (53.5 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4a** (32.6 mg, 0.20 mmol, 2.0 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3a** in 51% (19.5 mg) yield.

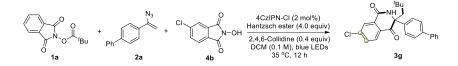


To a Schlenk tube were added **1s** (53.5 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3a** in 69% (26.4 mg) yield.

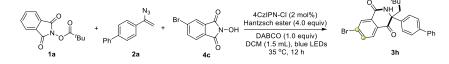


To a Schlenk tube were added **1t** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%). Then the tube was sealed and exposed

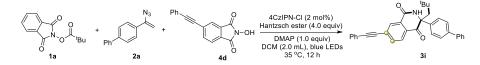
to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3×5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3a** in 66% (25.3 mg) yield.



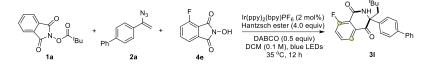
To a Schlenk tube were added **1u** (45.9 mg, 0.12 mmol, 1.2 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3a** in 52% (19.9 mg) yield.



To a Schlenk tube were added **1v** (89.4 mg, 0.16 mmol, 1.6 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3a** in 45% (17.3 mg) yield.

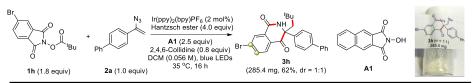

Divergent synthesis of 3 from 1a

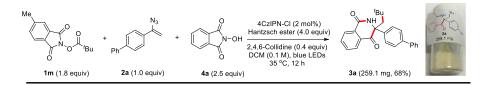
To a Schlenk tube were added **1a** (29.6 mg, 0.12 mmol, 1.2 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4b** (23.6 mg, 0.12 mmol, 1.2 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) 2,4,6-collidine (4.8 μ L, 0.04 mmol, 40 mol%). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3g** in 45% (18.8 mg, rr = 1:1) yield.



To a Schlenk tube were added **1a** (44.5 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4c** (43.2 mg, 0.18 mmol, 1.8 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv), DABCO (11.2 mg, 0.1 mmol, 1.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.5 mL). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3h** in 46% (21.2 mg, rr = 1:1) yield.

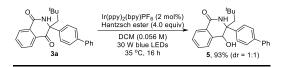
To a Schlenk tube were added **1a** (44.5 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4d** (47.3 mg, 0.18 mmol, 1.8 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv), DMAP (12.1 mg, 0.1 mmol, 1.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (2.0 mL). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3×5.0 mL).


The organic phases were dried over anhydrous sodium sulfate, filtered, and evacuated under vacuum. The residue was purified directly by column chromatography to afford the pure product **3i** in 48% (23.2 mg, rr = 1:1) yield.


To a Schlenk tube were added **1a** (44.5 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.10 mmol, 1.0 equiv), **4e** (32.6 mg, 0.18 mmol, 1.8 equiv), $Ir(ppy)_2(bpy)PF_6$ (1.6 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv), DABCO (5.6 mg, 0.05 mmol, 50 mol%). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3l** in 48% (19.2 mg, rr = 1:1) yield.

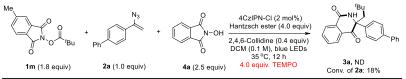
VI. Mechanistic Study

Scale-up reaction

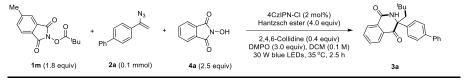


To a Schlenk tube were added **1h** (0.59 g, 1.8 mmol, 1.8 equiv), **2a** (0.22 g, 1.0 mmol, 1.0 equiv), **A1** (0.44 g, 2.5 mmol, 2.5 equiv), $Ir(ppy)_2(bpy)PF_6$ (16.0 mg, 0.02 mmol, 2.0 mol%), Hantzsch ester (1.01 g, 4.0 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (18.0 mL) and 2,4,6-collidine (96.0 µL, 0.8 mmol, 0.8 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (20.0 mL) and extracted with DCM (3 × 10.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3h** (285.4 mg, 62%, dr = 1:1).

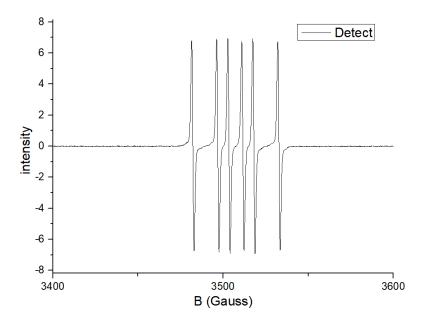
To a Schlenk tube were added **1m** (0.47 g, 1.8 mmol, 1.8 equiv), **2a** (0.22 g, 1.0 mmol, 1.0 equiv), **4a** (0.41 g, 2.5 mmol, 2.5 equiv), 4CzIPN-Cl (21.0 mg, 0.02 mmol, 2.0 mol%), Hantzsch ester (1.01 g, 4.0 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles, followed by the addition of DCM (10.0 mL) and 2,4,6-collidine (48.0 μ L, 0.4 mmol, 0.4 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with stirring 12 h. The reaction was diluted with H₂O (20.0 mL) and extracted with DCM (3 × 10.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **3a** (259.1 mg, 68%).

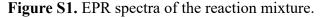

Selective reduction of 3a

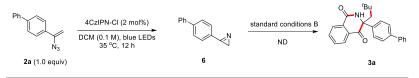
To a Schlenk tube were added 3a (38.3 mg, 0.10 mmol, 1.0 equiv), Ir(ppy)₂(bpy)PF₆


(1.6 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.40 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.8 mL). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C with 16 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3×5.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **5** (35.8 mg, 93% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.62 – 7.58 (m, 4H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.49 – 7.41 (m, 4H), 7.35 (t, *J* = 7.4 Hz, 1H), 6.48 (brs, 1H), 4.77 (s, 1H), 2.23 (d, *J* = 14.9 Hz, 1H), 2.19 (brs, 1H), 1.85 (d, *J* = 14.9 Hz, 1H), 0.78 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.1, 140.6, 140.1, 139.0, 138.9, 133.2, 129.05, 128.96, 128.3, 127.9, 127.7, 127.5, 127.1, 127.0, 126.7, 75.0, 65.5, 49.1, 32.0, 31.8. HR-MS (ESI-TOF) calcd for C₂₆H₂₈NO₂⁺ [M+H]⁺ 386.2115 found 386.2102.

Radical intermediate quench reactions


To a Schlenk tube were added **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), TEMPO (62.4 mg, 0.40 mmol, 4.0 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The conversion of **2a** (18%) and yield of **3a** (0%) were determined by ¹H NMR of the crude reaction mixture using mesitylene as internal standard.

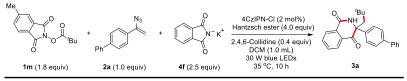

EPR Experiment


To a Schlenk tube were added **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), DMPO (33.9 mg, 0.30 mmol,

3.0 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 2.5 h, then detected the EPR signal.

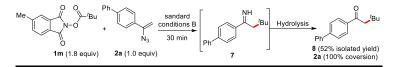
Excluding 2H-azirine as an intermediate

To a Schlenk tube were added **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 12 h. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3×5.0 mL). The combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified directly by column chromatography to afford the pure product **6**.


Then, to a Schlenk tube were added **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **6** (19.3 mg, 0.1 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv). Then the tube was sealed

and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 12 h. The crude reaction mixture was analyzed by ¹H NMR spectroscopy and desired product 3a was not detected.

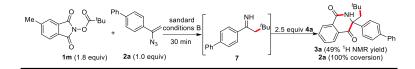
3-([1,1'-biphenyl]-4-yl)-2*H*-azirine (6)¹


¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 – 7.97 (m, 2H), 7.81 – 7.78 (m, 2H), 7.67 – 7.65 (m, 2H), 7.51 – 7.47 (m, 2H), 7.44 – 7.40 (m, 1H), 1.82 (s, 2H).

Excluding phthalimide anion as intermediate for the reaction

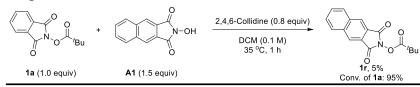
To a Schlenk tube were added **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), **4f** (46.3 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 10 h. The crude reaction mixture was analyzed by ¹H NMR spectroscopy and the desired product **3a** was not detected.

Identifying ketimine as an intermediate



To a Schlenk tube were added **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 30 minutes. The reaction was diluted with H₂O (5.0 mL) and extracted with DCM (3 × 5.0 mL). The organic phases were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The residue was purified directly by column chromatography to afford the pure product **8** (13.0 mg) in 52% yield.

1-([1,1'-Biphenyl]-4-yl)-3,3-dimethylbutan-1-one (8)¹



¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 7.99 (m, 2H), 7.70 – 7.61 (m, 4H), 7.50 – 7.44 (m, 2H), 7.42 – 7.37 (m, 1H), 2.89 (s, 2H), 1.09 (s, 9H).

To a Schlenk tube were added **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv). The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv). Then the tube was sealed and exposed to blue LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 30 minutes. Then **4a** (40.7 mg, 0.25 mmol, 2.5 equiv) was added under N₂, and the tube was sealed and exposed to blue LEDs (30 W LEDs (30 W LED light bulbs 2.5 cm away from the vial) at 35 °C for 12 h. The reaction mixture was diluted with ethyl acetate and poured into a separatory funnel, washed with brine. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The conversion of **2a** (100%) and yield of **3a** (49%) were determined by ¹H NMR of the crude reaction mixture using mesitylene as internal standard.

Cross-over experiment

To a Schlenk tube were added **1a** (24.7 mg, 0.10 mmol, 1.0 equiv), **A1** (32.0 mg, 0.15 mmol, 1.5 equiv), The tube was evacuated and back-filled with nitrogen (3 cycles), followed by the addition of DCM (1.0 mL) and 2,4,6-collidine (9.6 μ L, 0.08 mmol, 0.8 equiv). Then the tube was sealed and stirred at 35 °C for 1 h. The reaction mixture was concentrated under reduced pressure. The yield of **1r** (5%) and conv. of **1a** (95%) was determined by ¹H NMR of the crude reaction mixture using mesitylene as internal standard.

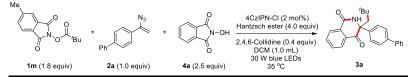
Quantum yield measurement

Blue LED (λ max = 440 nm) was used for measurement of quantum yield.

Determination of the light intensity at 440 nm

The photon flux of the blue LED light was determined by standard ferrioxalate actinometry,¹³⁻¹⁵ the photon flux of the LED (λ max = 440 nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (2.21 g) in H₂SO₄ (30 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (50 mg) and sodium acetate (11.25g) in H₂SO₄ (50 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (2.0 mL) was placed in a cuvette and irradiated for 45 seconds at λ max = 440 nm. After irradiation, the phenanthroline solution (0.35 mL) was added to the cuvette and the mixture was allowed to stand in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A nonirradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1.

Mol of Fe²⁺ =
$$\frac{v \cdot \Delta_{A510nm}}{l \cdot \varepsilon} = \frac{(0.00235 L) \cdot (1.655)}{(1.0 cm) \cdot 11100 \frac{L}{mol} \cdot cm} = 3.50 \times 10^{-7} mol$$
 (1)


V is the total volume (0.00235 L) of the solution after addition of phenanthroline, ΔA (1.425) is the difference in absorbance at 510 nm between the irradiated and nonirradiated solutions (**Figure S2**), 1 is the path length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 Lmol-1 cm-1). The photon flux can be calculated using eq 2.

Photon flux =
$$\frac{mol \ of Fe^{2+}}{\emptyset \cdot t \cdot f} = \frac{3.50 \times 10^{-7}}{(1.01) \cdot (45 \ s) \cdot (0.996)} = 7.73 \times 10^{-9} \ einstein/s$$
 (2)

Where Φ is the quantum yield for the ferrioxalate actinometer (1.01 at $\lambda = 440$ nm), t is the irradiation time (45 s), and f is the fraction of light absorbed at 440 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where A₄₄₀ nm is the absorbance of the ferrioxalate solution at 440 nm.

$$f = 1 - 10^{-A_{440nm}} = 1 - 10^{-2.354} = 0.996$$
(3)

The photon flux was thus calculated to be 7.73×10^{-9} einstein/s

A cuvette sealed with a rubber stopper was charged with **1m** (47.0 mg, 0.18 mmol, 1.8 equiv), **2a** (22.1 mg, 0.1 mmol, 1.0 equiv), **4a** (40.7 mg, 0.25 mmol, 2.5 equiv), 4CzIPN-Cl (2.1 mg, 0.002 mmol, 2.0 mol%), Hantzsch ester (101.3 mg, 0.4 mmol, 4.0 equiv), 2,4,6-collidine (4.8 μ L, 0.04 mmol, 0.4 equiv) in 1 mL DCM under argon atmosphere. The sample was stirred and irradiated (λ = 440 nm) for 1800 s (0.5 h) at room temperature. After irradiation, the solvent was removed. The yield of product

formed was determined as 23% yield $(2.3 \times 10^{-5} \text{ mol of } 3a)$ by crude ¹H NMR based on a mesitylene standard. The reaction quantum yield (Φ) was determined using eq 5 where the photon flux is 7.73×10^{-9} einstein/s (determined by actinometry as described above), t is the reaction time (1800 s) and f is the fraction of incident light absorbed by the photosensitizer, 4CzIPN-Cl, determined using eq 4. An absorption spectrum of the catalyst (1.25×10^{-4} M) gave an absorbance value of 0.752 at 440 nm (Figure S3), indicating that the fraction of light absorbed by the photocatalyst (f) is 0.823.

$$\phi = \frac{mol \ of \ product}{fluxtf} = \frac{2.30 \times 10^{-5} \ mol}{7.73 \times 10^{-9} \ einstein/s \times 1800 \ s \times 0.823} = 2.01$$
(5)

The reaction quantum yield (Φ) was calculated to be 2.01.

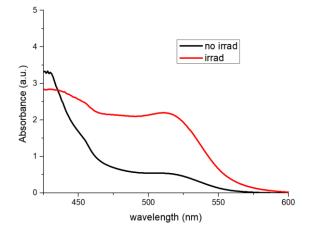


Figure S2. The irradiation experiment and non-irradiation experiment absorption

spectra.

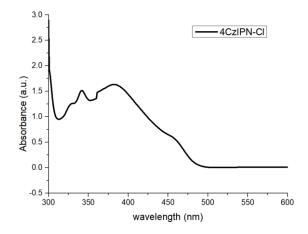
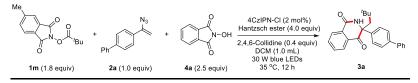



Figure S3. Absorption spectra of 4CzIPN-Cl.

The luminescence quenching experiments

Emission intensities were recorded using FS-5 fluorescence spectrometer (Edinburgh instrument) for all experiments. All 4CzIPN-Cl solutions were excited at 454 nm and the emission intensity was collected at 425-750 nm. In a typical experiment, the DCM as solution of 4CzIPN-Cl (0.5μ M) was added the appropriate amount of quencher in a 4.5 cm quartz cuvette. After degassing with nitrogen for 10 min, the emission spectra of the samples were collected. The results showed that Hantzsch could quench the photoexcited 4CzIPN-Cl effectively, while **1m**, **2a**, **4a** and 2,4,6-collidine were less effective. The emission intensity at 542 nm was observed.

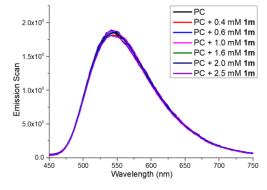
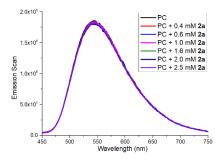




Figure S4. The luminescence quenching of 1m.

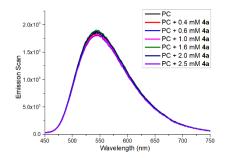


Figure S6. The luminescence quenching of 4a.

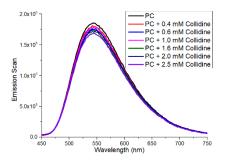


Figure S7. The luminescence quenching of 2,4,6-collidine.

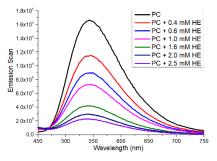


Figure S8. The luminescence quenching of Hantzsch ester.

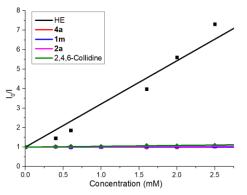


Figure S9. The lines of luminescence quenching experiments.

The Cyclic Voltammetry Experiments

Cyclic voltammetry was carried out in a gas-tight glass cell with CHI 660Epotentiostat in a nitrogen atmosphere. A glassy carbon disk electrode (diameter is 1.0 mm.PTFE shroud) was used as a working electrode. A platinum foil was used as a counter electrode.Ag/AgNO; electrode was used as a reference electrode, which was calibrated with Fc/Fc* redoxcouple, and a scan rate of 1 V/s. Samples were prepared with 0.05 mmol of substrate in 10.0 mL of 0.1 M tetrabutylammonium hexafluorophosphate in dry, degassed acetonitrile.

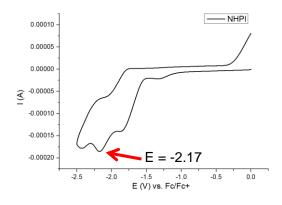


Figure S10. Cyclic voltammogram of NHPI (4a).

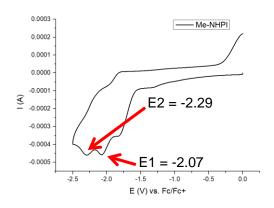
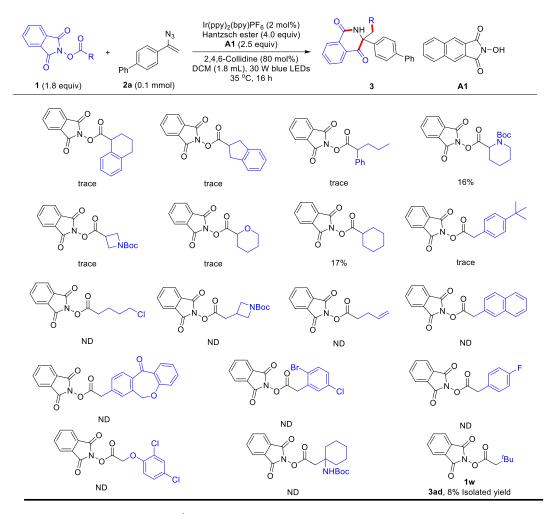
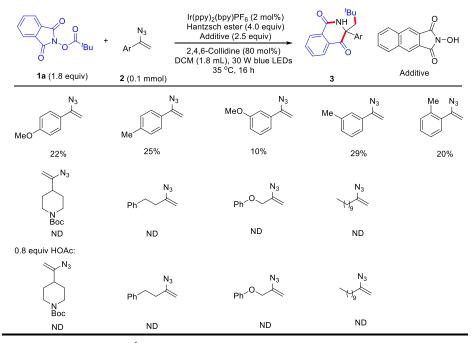
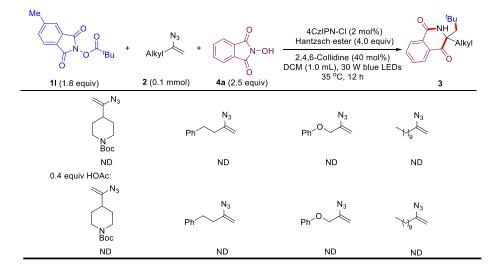



Figure S11. Cyclic voltammogram of Me-NHPI.

VII. Unsuccessful Substrates

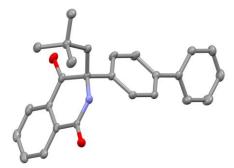
Yield was determined by ¹H NMR of the crude mixture using mesitylene internal standard.


3-([1,1'-biphenyl]-4-yl)-3-(3,3-dimethylbutyl)-2,3-dihydroisoquinoline-1,4-dione (3ad)


Following typical procedure A, the reaction of **1w** (47.0 mg, 0.18 mmol), **2a** (22.1 mg, 0.10 mmol) for 16 h afforded **3ad** as white solid (3.0 mg, 8% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.29 (d, *J* = 7.8 Hz, 1H), 8.00 (d, *J* = 7.5 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.3 Hz, 1H), 7.60 – 7.50 (m, 6H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.36 – 7.31 (m, 1H), 6.54 (brs, 1H), 2.63 (tt, *J* = 13.3, 3.2 Hz, 1H), 2.07 (tt, *J* = 13.3, 3.2 Hz, 1H), 1.34 – 1.27 (m, 2H), 0.91 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 193.1, 163.4, 141.3, 140.2, 139.4, 135.1, 133.4, 131.3, 131.2, 129.0, 128.5, 127.8, 127.20, 127.18, 126.3, 70.8, 37.8, 35.8, 30.4, 29.4. HR-MS (ESI-TOF) calcd for C₂₇H₂₈NO₂⁺ [M+H]⁺ 398.2115; found 398.2113.


Yield was determined by ¹H NMR of the crude mixture using mesitylene internal standard.

Yield was determined by ¹H NMR of the crude mixture using mesitylene internal standard.

VIII. X-Ray Diffraction Data

X-Ray Diffraction Data of 3a (CCDC 2361327)

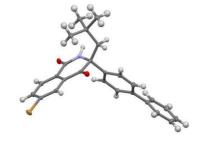


Table S13.	Crystal c	lata and s	structure re	efinement	for 3a ((dhw512602_	<u>0</u> m)

Identification code	dhw512602_0m
Empirical formula	C26H25NO2
Formula weight	383.47
Temperature/K	100.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	13.8148(7)
b/Å	17.2854(8)
c/Å	19.6680(9)
$\alpha/^{\circ}$	79.694(2)
β/°	74.868(2)
$\gamma/^{\circ}$	68.162(2)
Volume/Å ³	4190.8(4)
Z	8
$\rho_{calc}g/cm^3$	1.216
μ/mm^{-1}	0.598
F(000)	1632.0
Crystal size/mm ³	$0.03\times0.02\times0.02$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	4.674 to 144.762
Index ranges	$-17 \le h \le 17, -21 \le k \le 21, -24 \le l \le 22$
Reflections collected	79252
Independent reflections	16346 [$R_{int} = 0.0603$, $R_{sigma} = 0.0467$]
Data/restraints/parameters	16346/0/1057

Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0581, wR_2 = 0.1555$
Final R indexes [all data]	$R_1 = 0.0764, wR_2 = 0.1726$
Largest diff. peak/hole / e Å ⁻³	1.17/-0.50

X-Ray Diffraction Data of 3h (CCDC 2361326)

Table S14. Crystal data and structure refinement for 3h (DHW202403215Q_0m)			
Identification code	DHW202403215Q_0m		
Empirical formula	C ₂₆ H ₂₄ BrNO ₂		
Formula weight	462.37		
Temperature/K	100.0		
Crystal system	monoclinic		
Space group	P21/c		
a/Å	12.1999(2)		
b/Å	8.1197(2)		
c/Å	22.7110(5)		
α/°	90		
β/°	103.9270(10)		
$\gamma/^{\circ}$	90		
Volume/Å ³	2183.61(8)		
Z	4		
$\rho_{cale}g/cm^3$	1.406		
μ/mm^{-1}	2.736		
F(000)	952.0		
Crystal size/mm ³	$0.03 \times 0.02 \times 0.02$		
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)		
2Θ range for data collection/°	7.466 to 145.394		
Index ranges	$-15 \le h \le 15, -8 \le k \le 9, -27 \le l \le 28$		

Reflections collected	27244
Independent reflections	4281 [$R_{int} = 0.0209, R_{sigma} = 0.0131$]
Data/restraints/parameters	4281/0/274
Goodness-of-fit on F ²	1.070
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0231, wR_2 = 0.0601$
Final R indexes [all data]	$R_1 = 0.0235, wR_2 = 0.0603$
Largest diff. peak/hole / e Å $^{-3}$	0.37/-0.47

IX. References

1. Li, S.; Du, H.; Davies, P. W.; Shu, W. CCS Chem. 2024, 6, 1060-1070.

2. Shibutani, S.; Kodo, T.; Takeda, M.; Nagao, K.; Tokunaga, N.; Sasaki, Y.; Ohmiya, H. J. Am. Chem. Soc. 2020, 142, 1211–1216.

Laudadio, G.; Neigenfind, P.; Péter, Á.; Rubel, C. Z.; Emmanuel, M. A.; Oderinde, M. S.; Ewing, T.-H.; Palkowitz, M. D.; Sloane, J. L.; Gillman, K. W.; Ridge, D.; Mandler, M. D.; Bolduc, P. N.; Nicastri, M. C.; Zhang, B.; Clementson, S.; Petersen, N. N.; Martín-Gago, P.; Mykhailiuk, P.; Engle, K. M.; Baran, P. S. *Angew. Chem. Int. Ed.* 2024, *63*, e202314617.

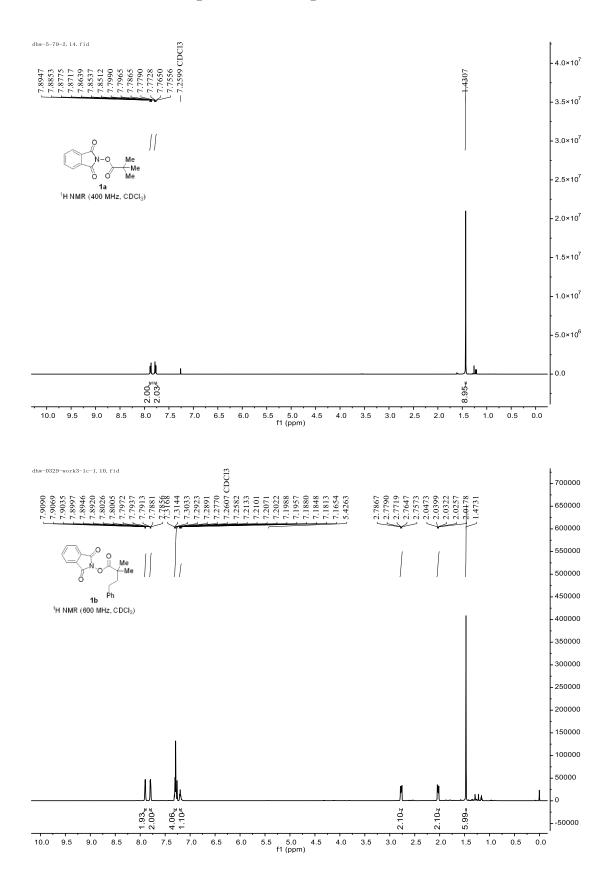
4. Chen, T.-G.; Zhang, H.; Mykhailiuk, P. K.; Merchant, R. R.; Smith, C. A.; Qin, T.; Baran, P. S. *Angew. Chem. Int. Ed.* **2019**, *58*, 2454–2458.

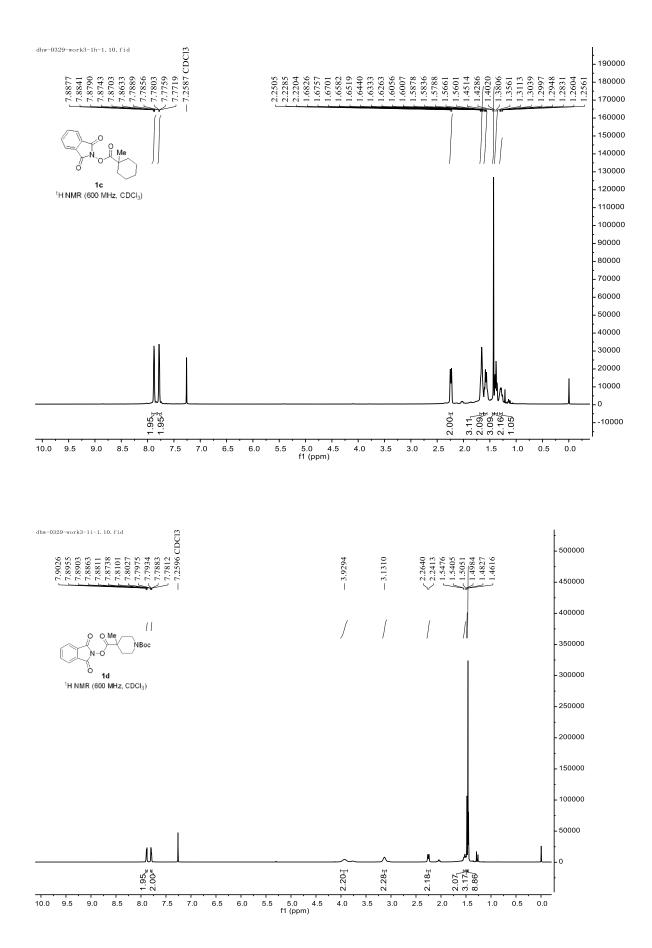
5. Dong, W.; Yen-Pon, E.; Li, L.; Bhattacharjee, A.; Jolit, A.; Molander, G. A. *Nat. Chem.* **2022**, *14*, 1068–1077.

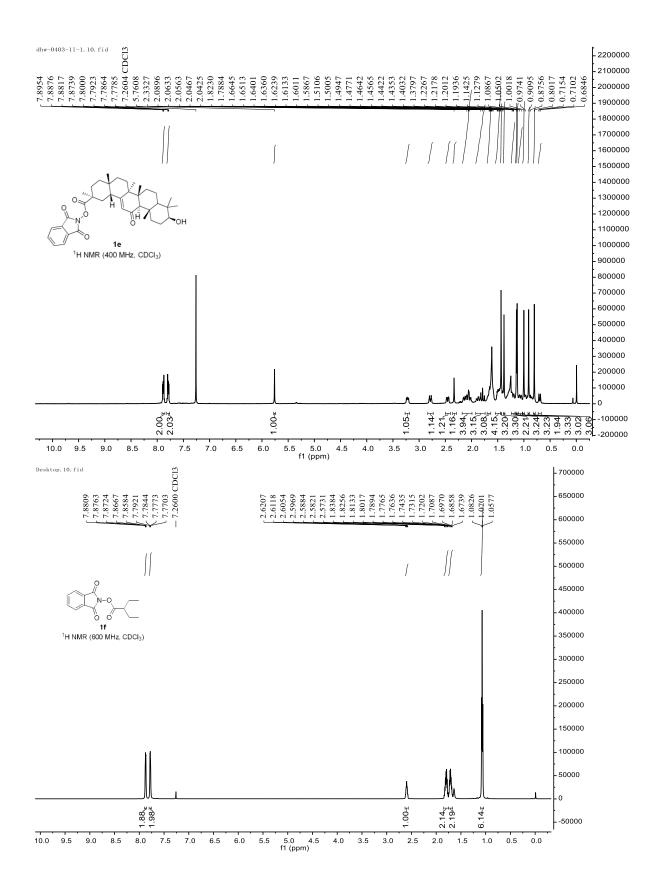
6. Phelps, J. M.; Kumar, Robinson, J. D.; Chu, J. C. K.; Flodén, N. J.; Beaton, S.; Gaunt,
M. J. J. Am. Chem. Soc. 2024, 146, 9045–9062.

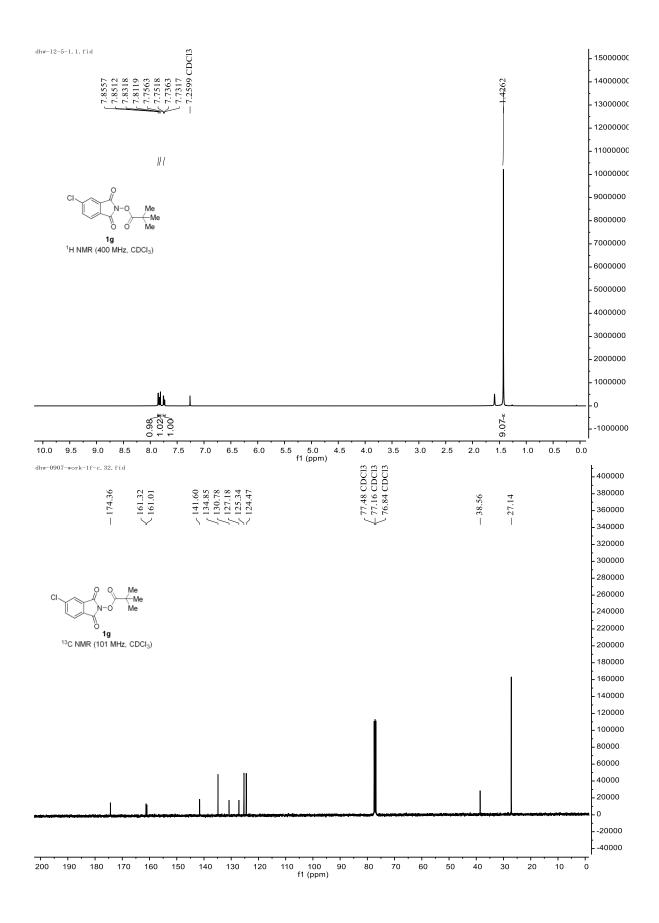
Shu, W.; Lorente, A.; Gómez-Bengoa, E.; Nevado, C. *Nat. Commun.* 2017, *8*, 13832.
 Duan, S.; Du, Y.; Wang, L.; Tian, X.; Zi, Y.; Zhang, H.; Walsh, P. J.; Yang, X. *Angew. Chem. Int. Ed.* 2023, *62*, e202300605.

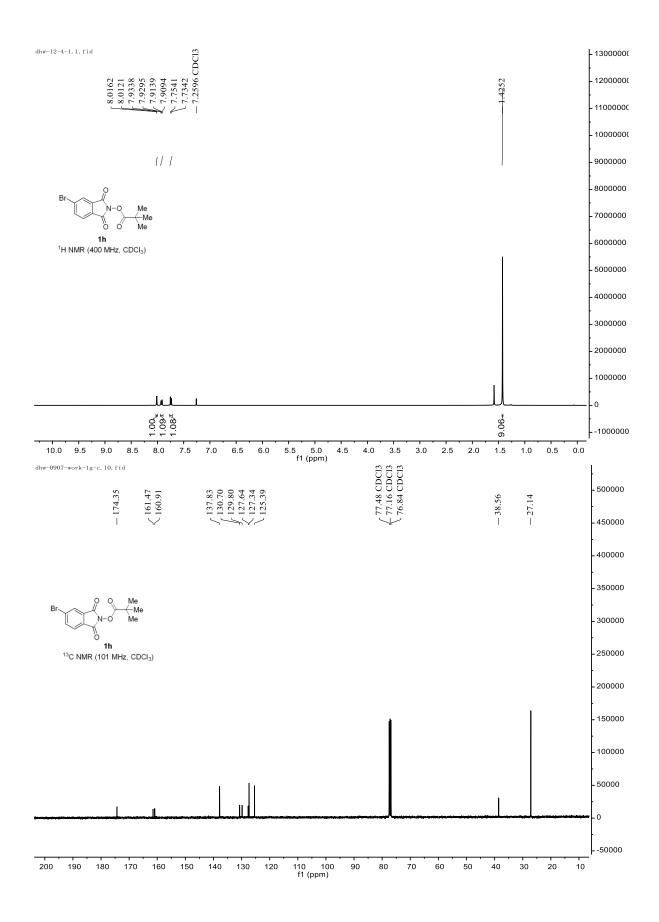
9. Ning, Y.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. *Chem* 2020, *6*, 486–496.
 10. Xu, X.; Peng, L.; Chang, X.; Guo, C. *J. Am. Chem. Soc.* 2021, *143*, 21048–21055.
 11. Wu, Y.; Liu, N.; Qi, M.; Qiao, H.; Lu, X.; Ma, L.; Zhou, Y.; Zhang, F.-L. *Org. Lett.* 2021, *23*, 3923–3927.

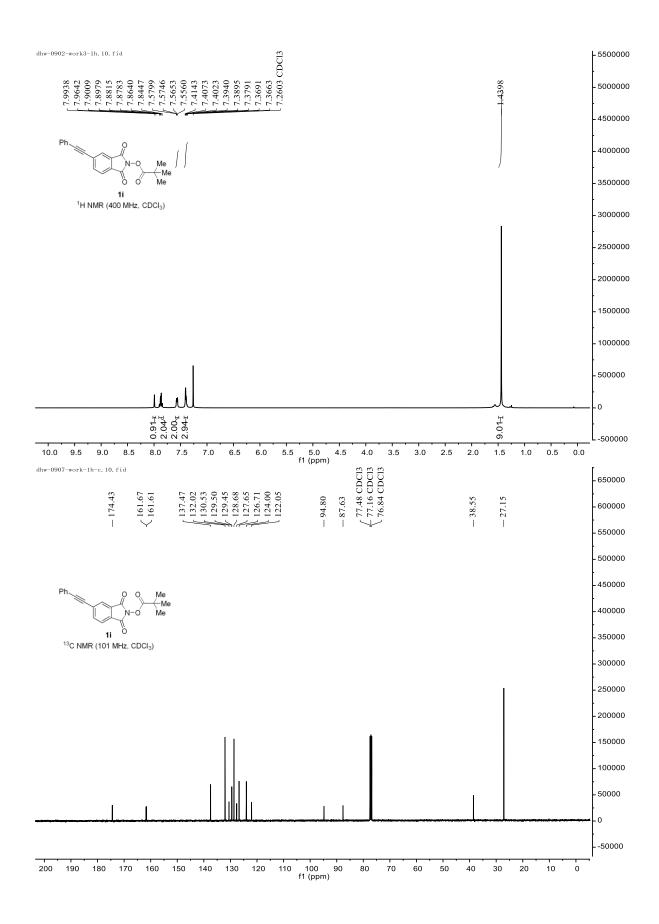

12. Wentzel, B. B; Donners, M. P. J.; Alsters, P. L.; Feiters, M. C.; Nolte, R. J. M. *Tetrahedron* **2000**, *56*, 7797–7803.

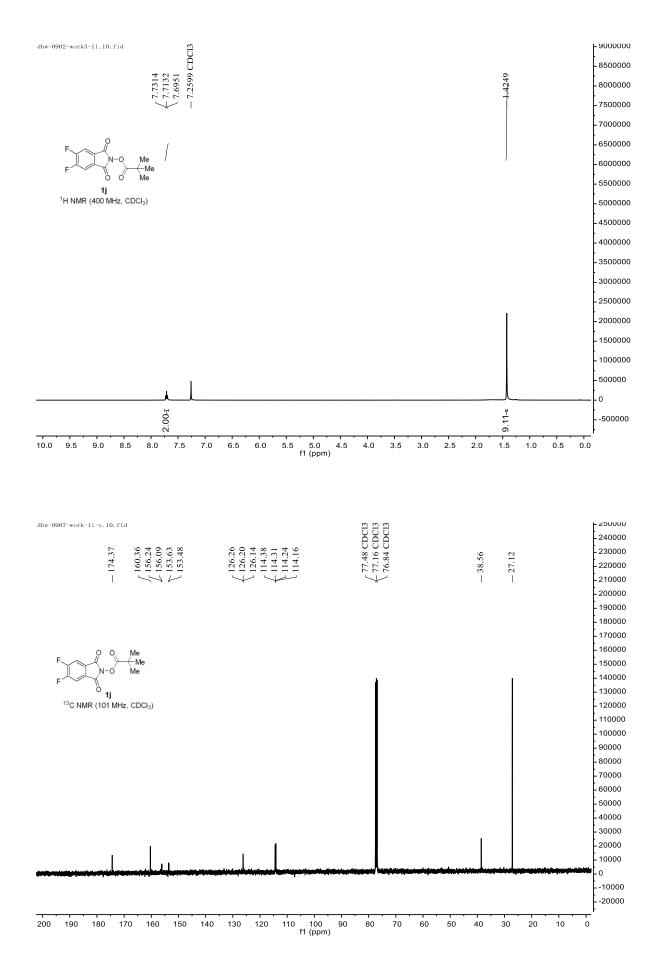

13. Maillard, L. T.; Benohoud, M.; Durand, P.; Badet, B. J. Org. Chem. **2005**, 70, 6303–6312.

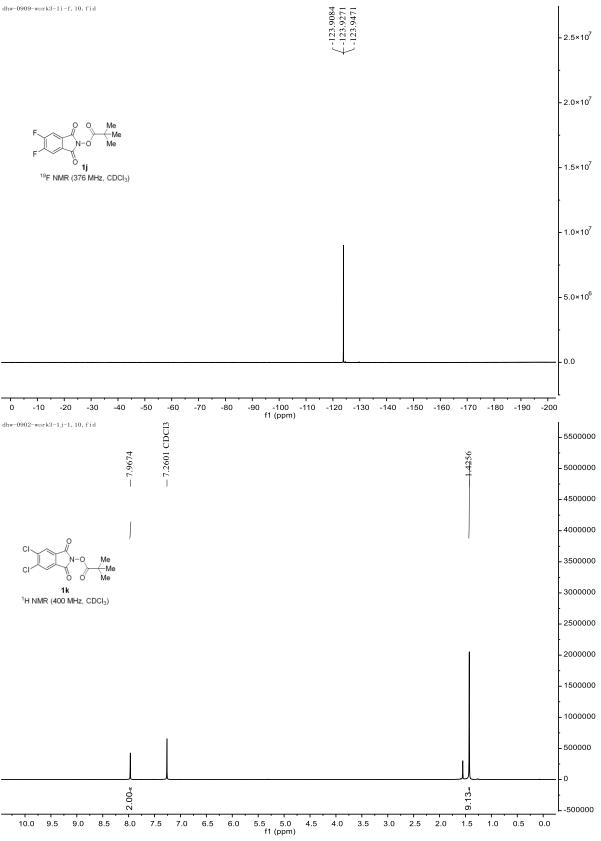

14. Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chem. 2004, 76, 2105.

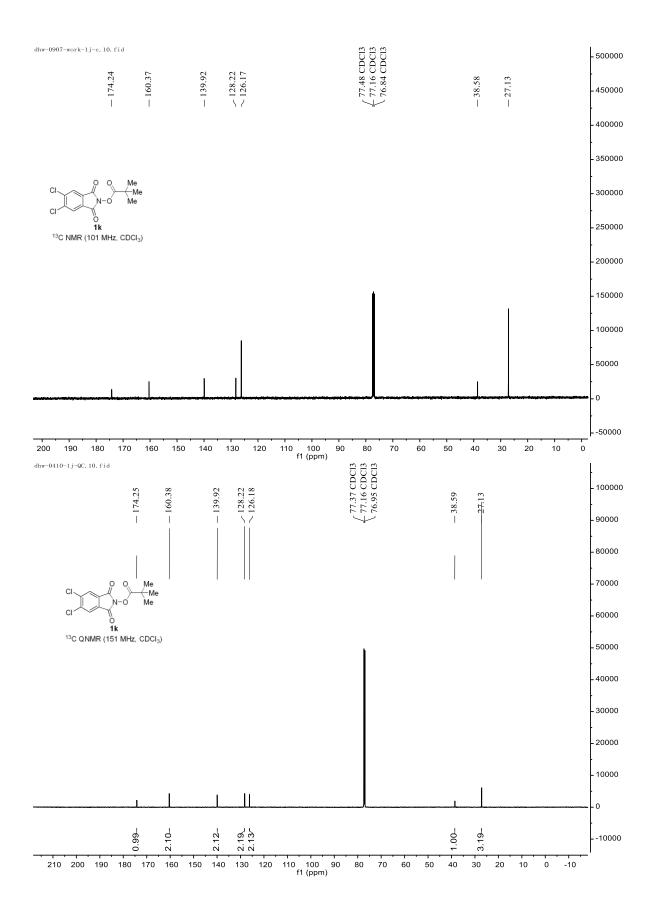

15. Du, Y.-D.; Wang, S.; Du, H.-W.; Chang, X.-Y.; Chen, X.-Y.; Li, Y.-L.; Shu, W. *Nat. Commun.* **2023**, *14*, 5339.

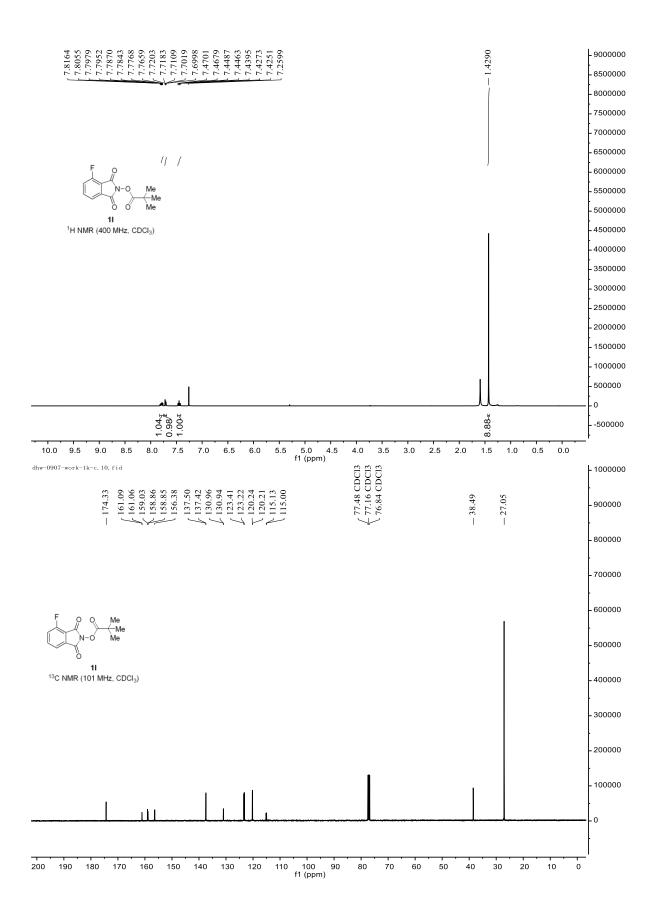

X. ¹H、 ¹³C and ¹⁹F Spectra of Compounds

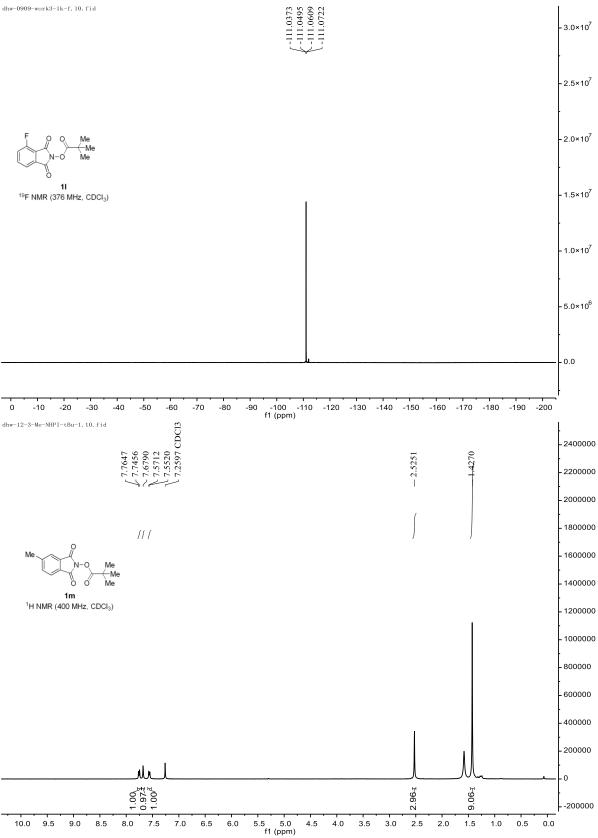


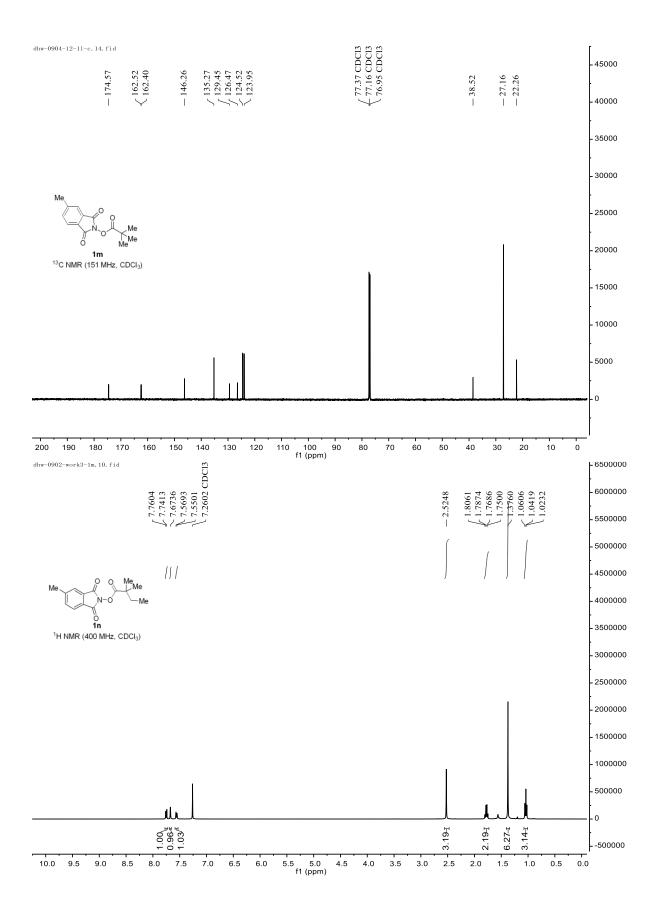


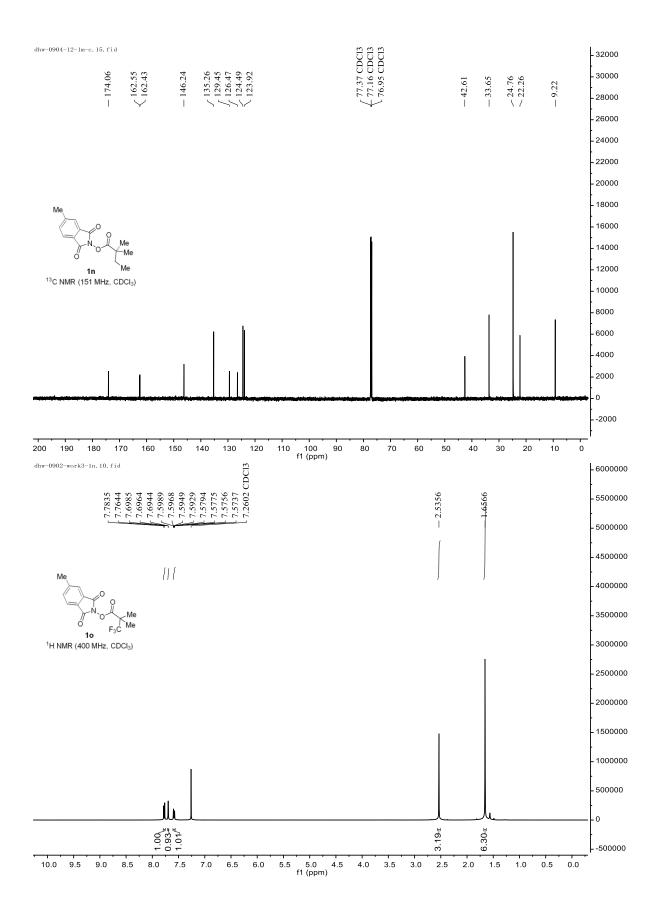


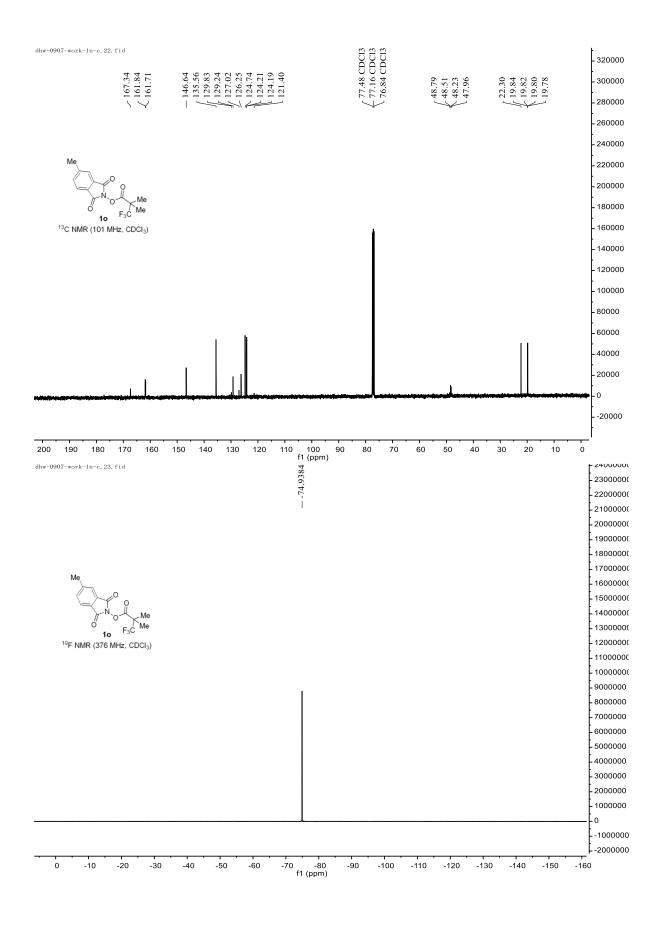


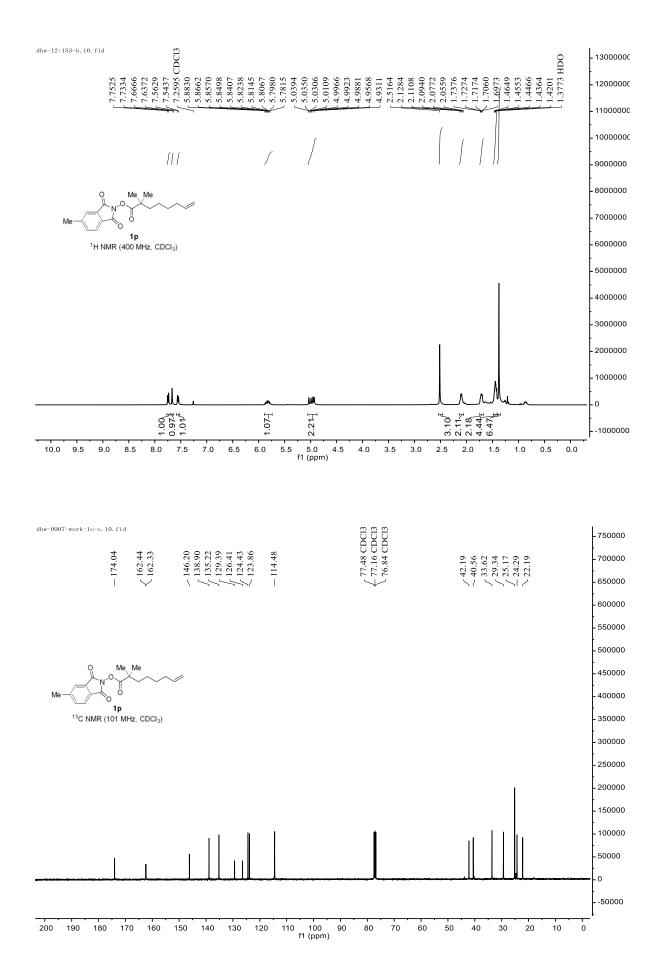


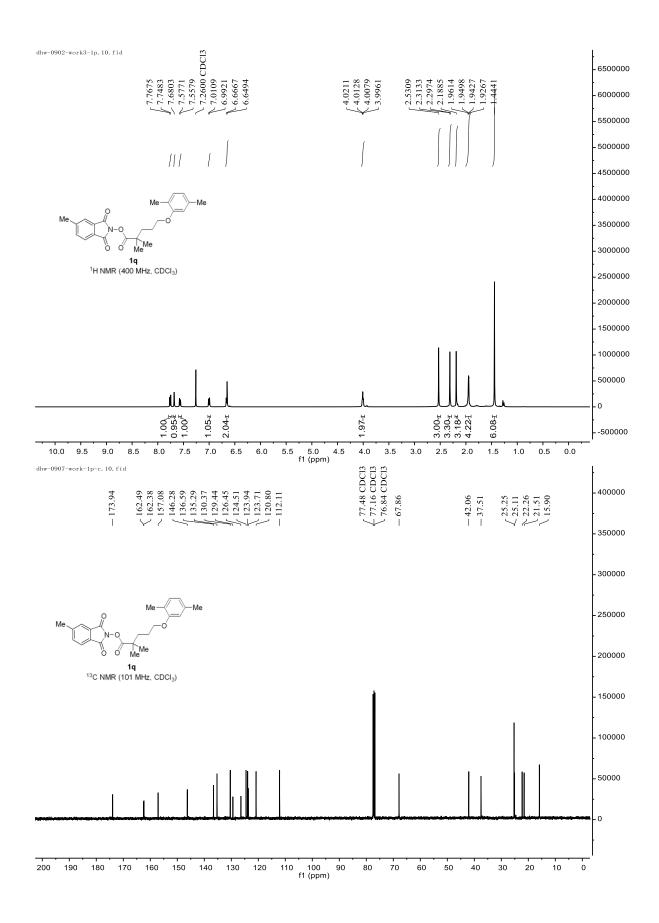


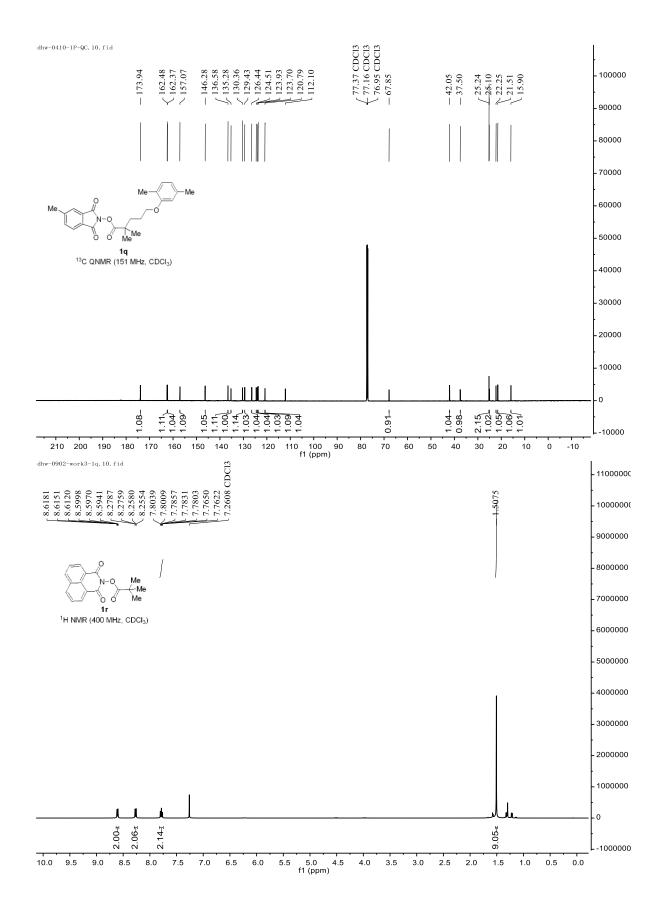


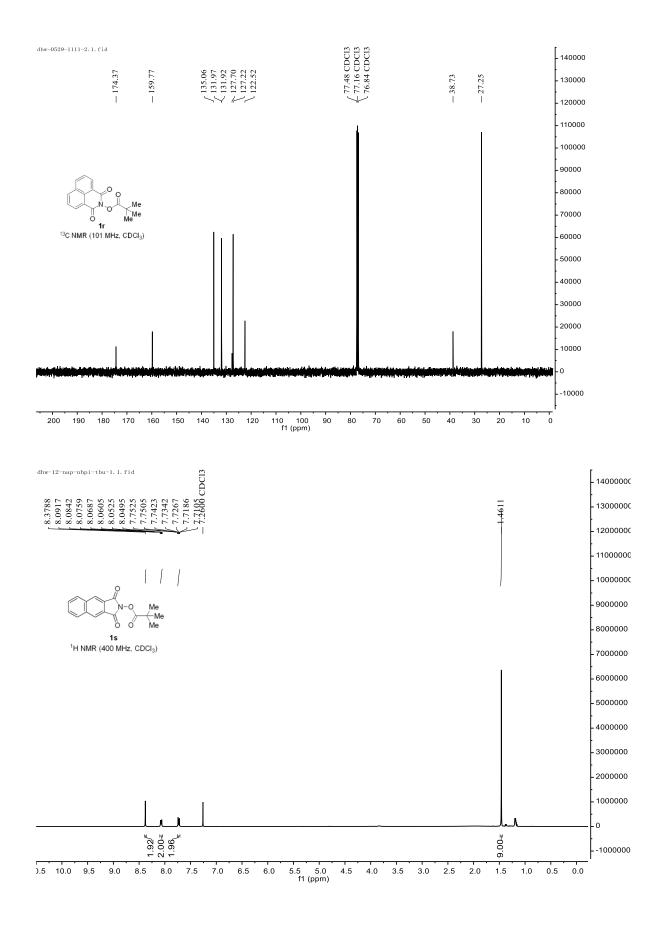


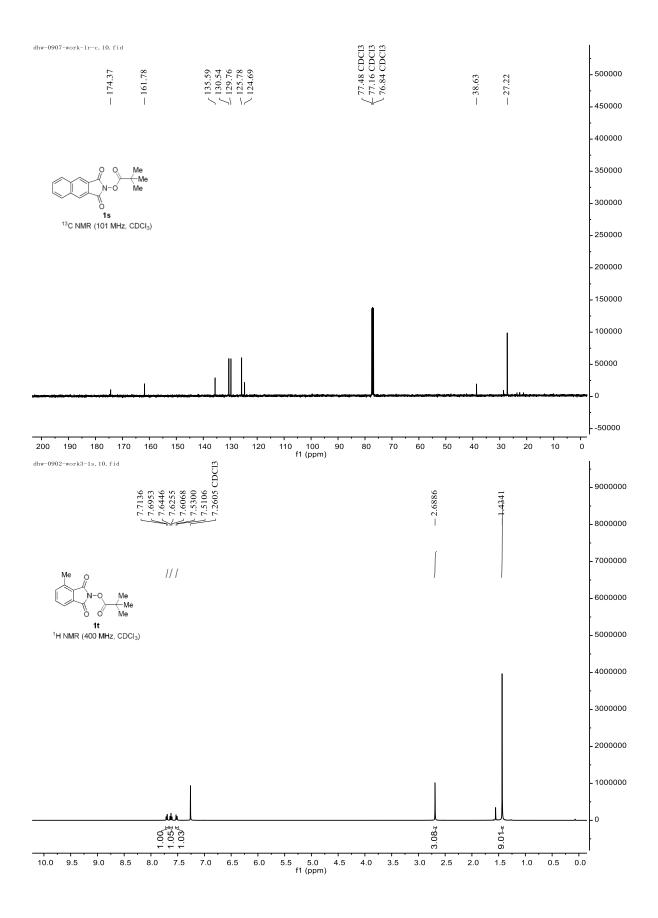


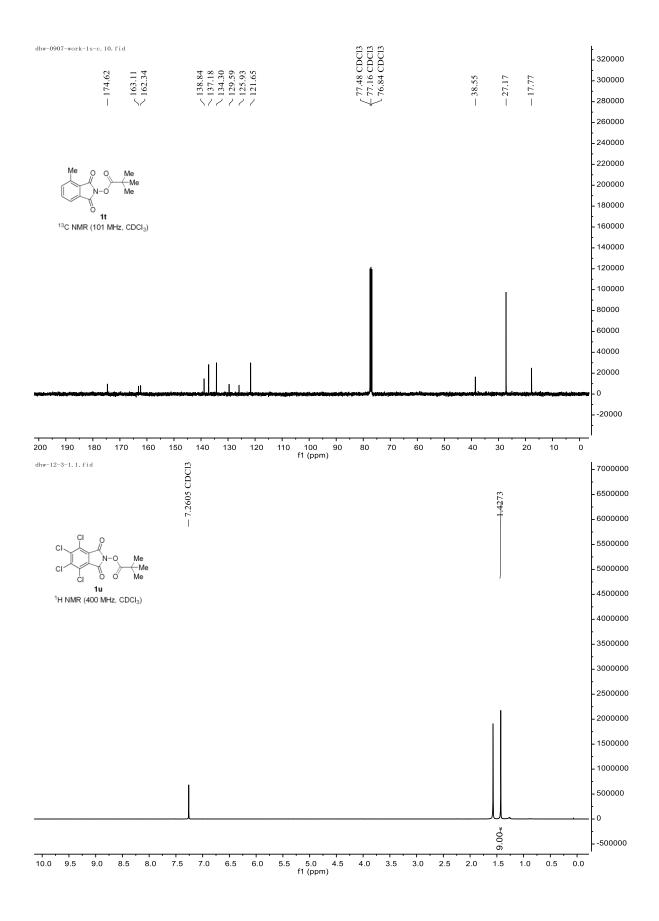


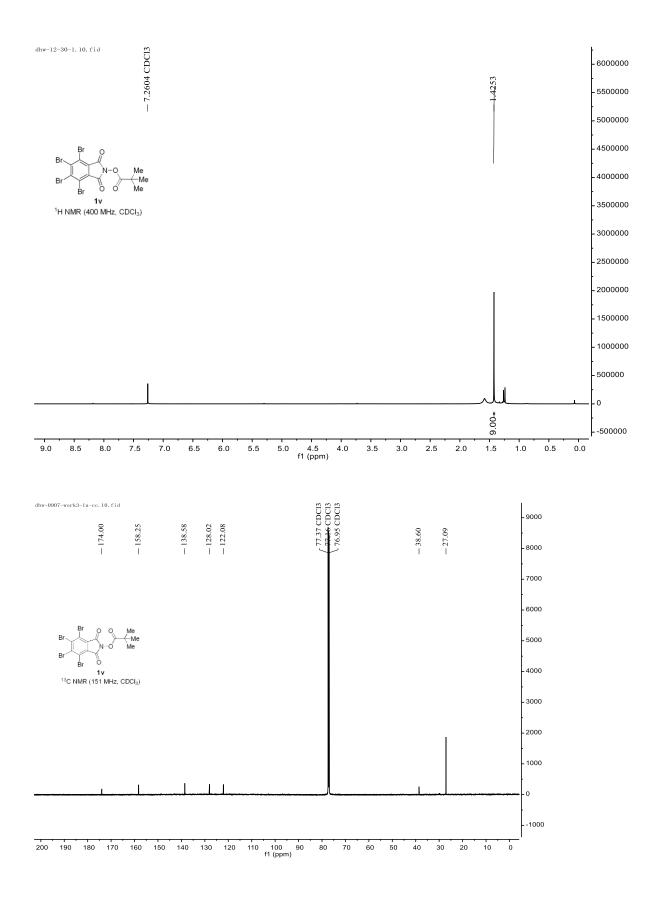


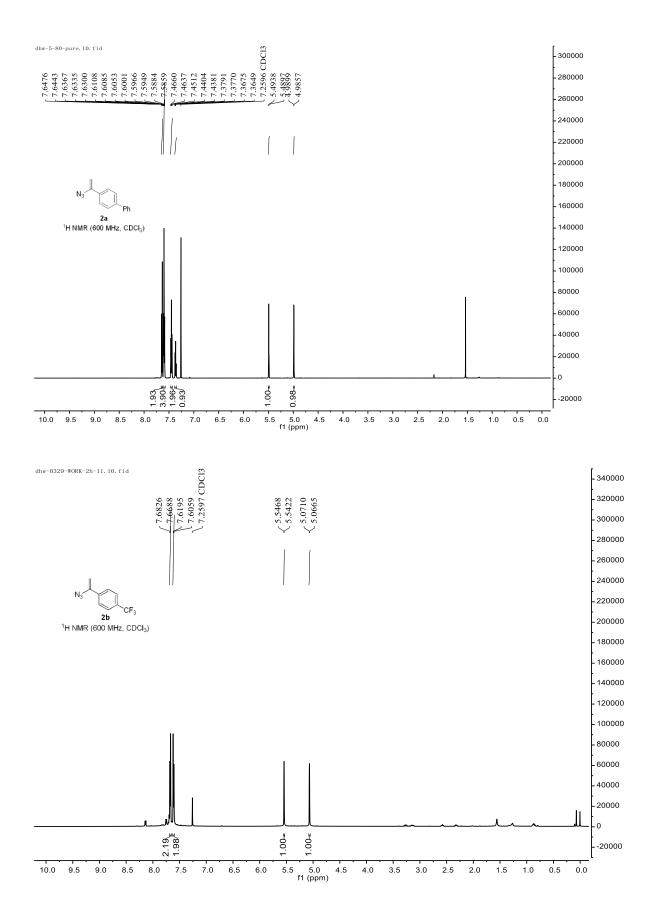


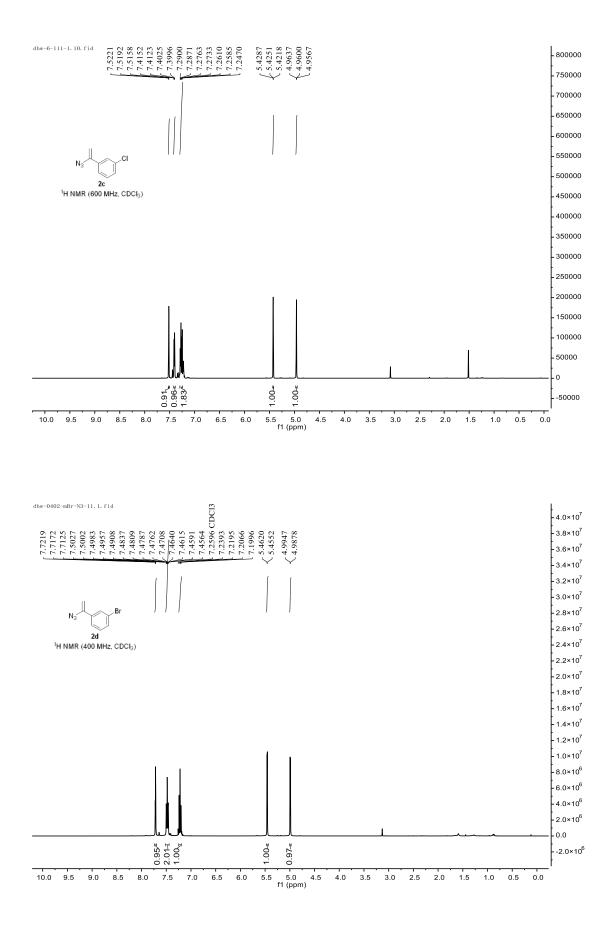


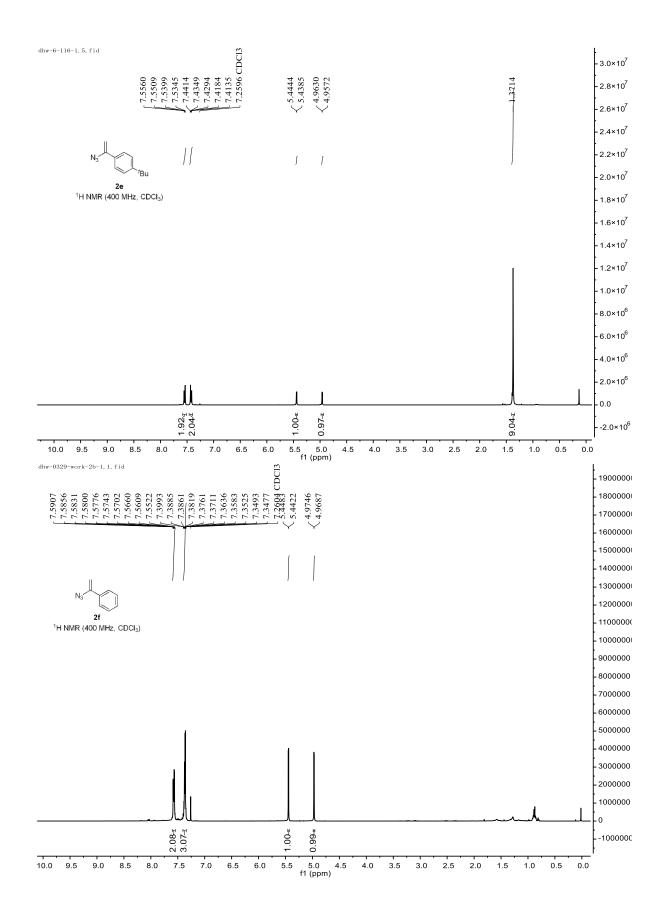


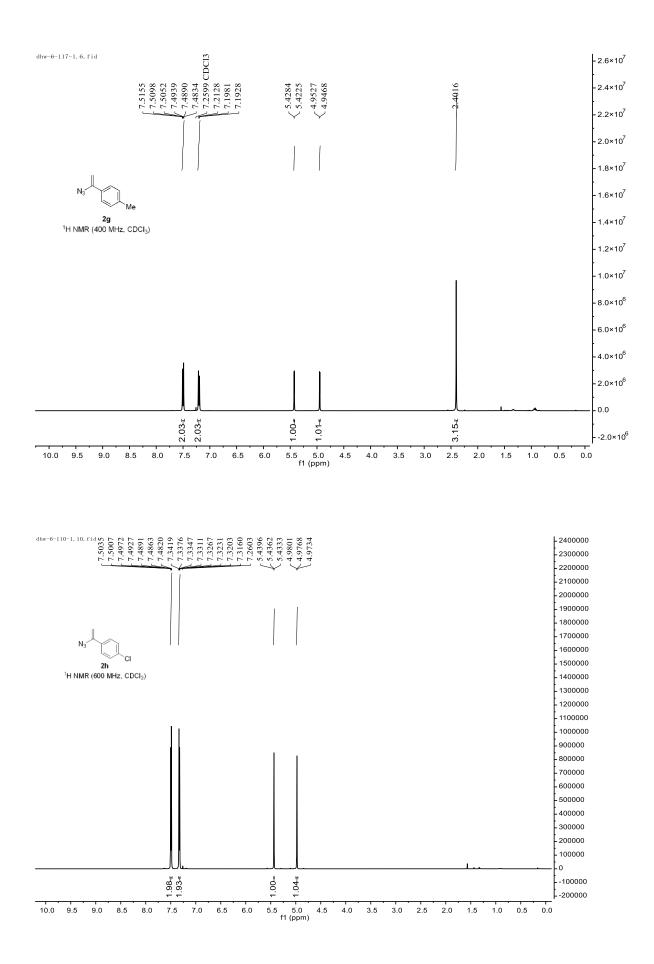


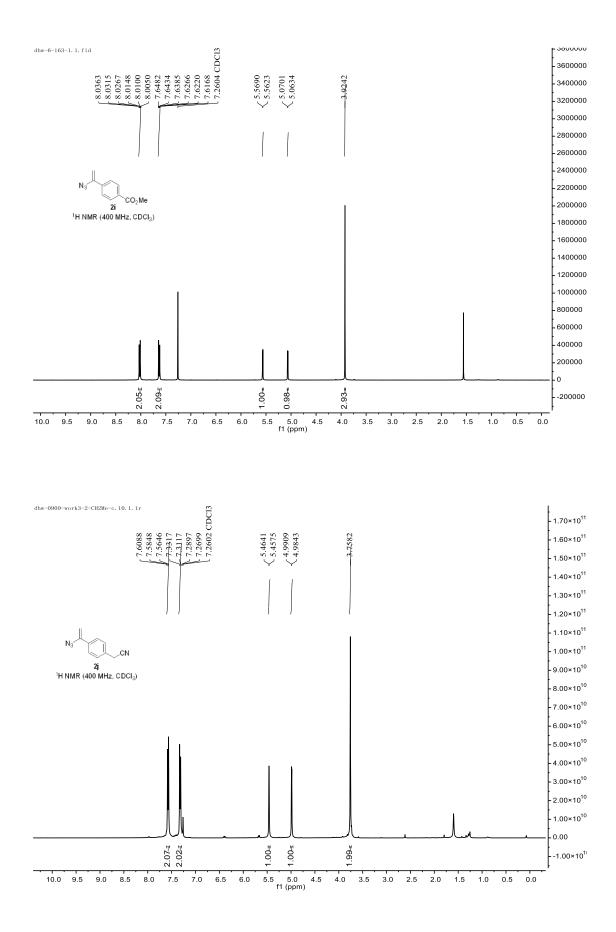


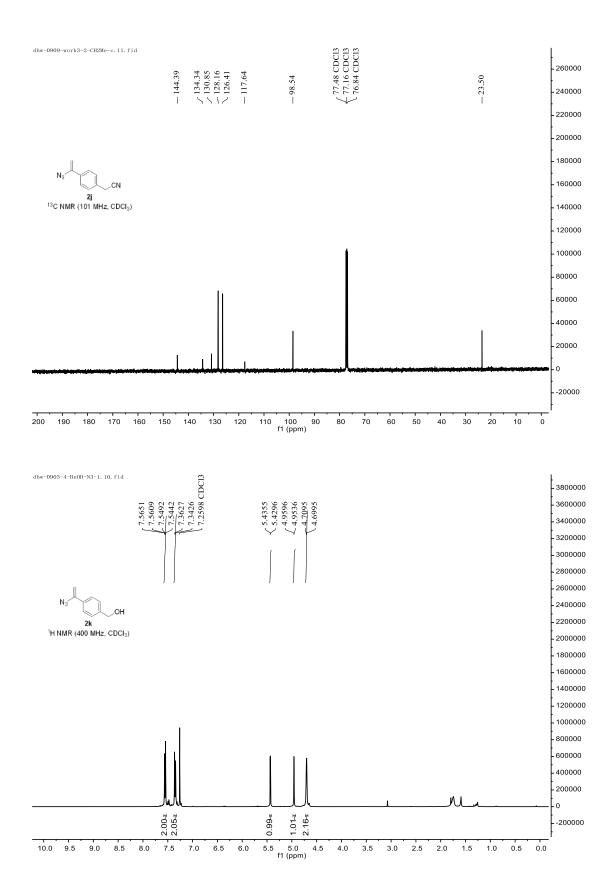


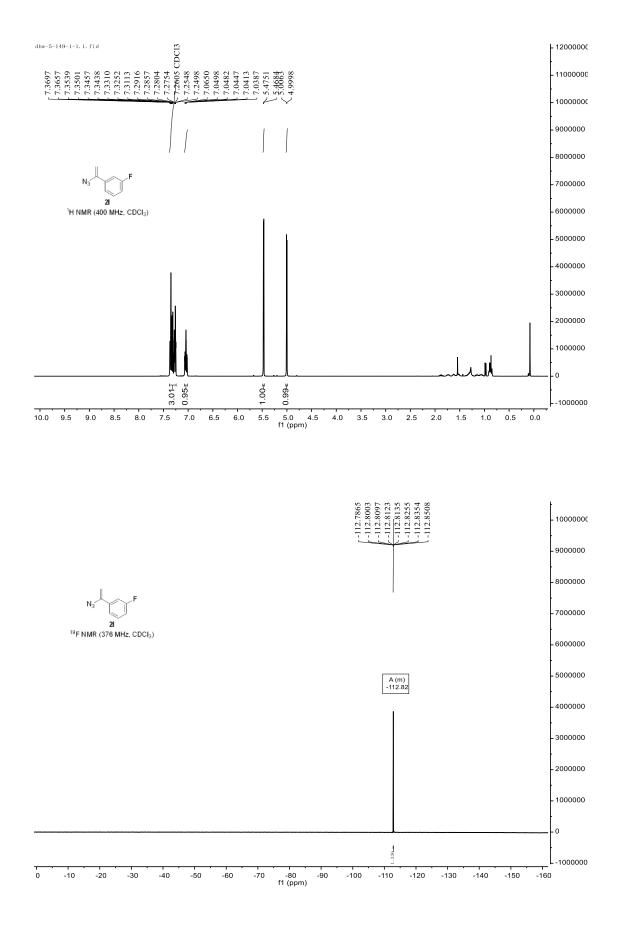

S78

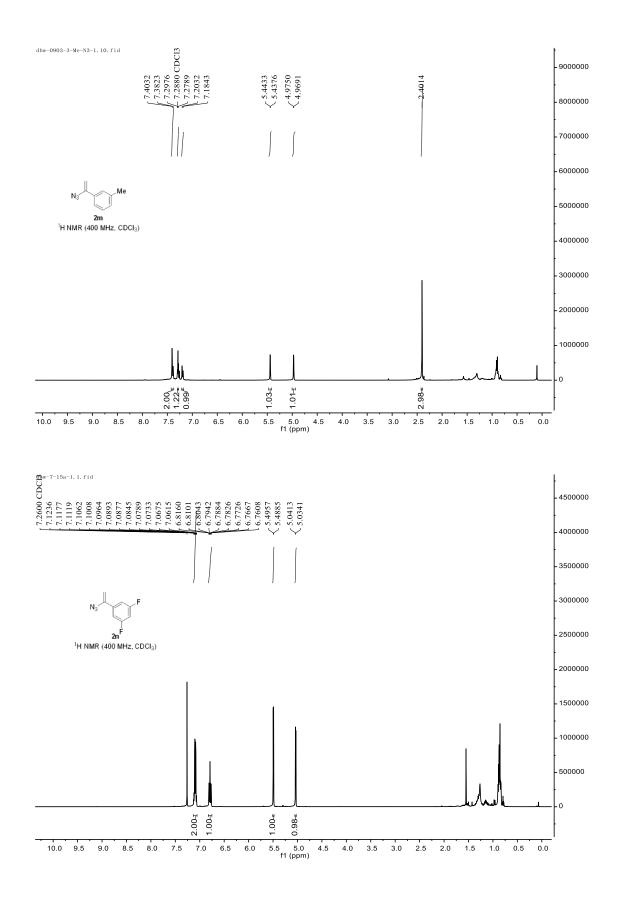


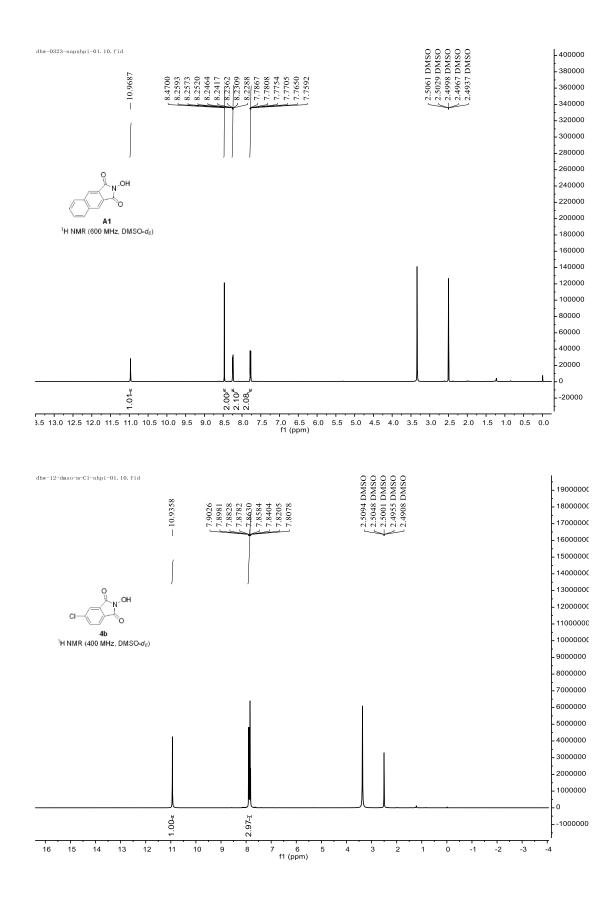

S79

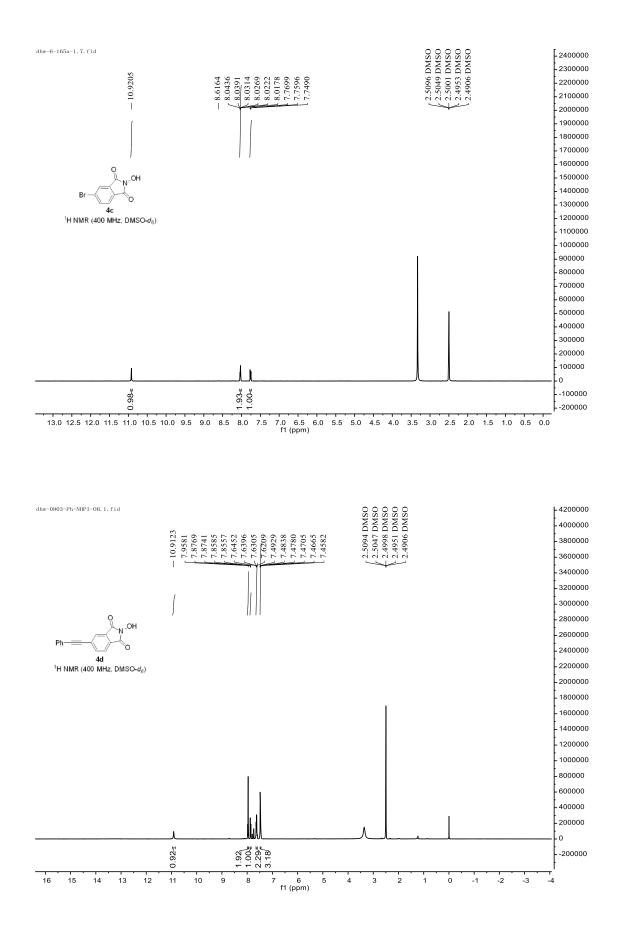


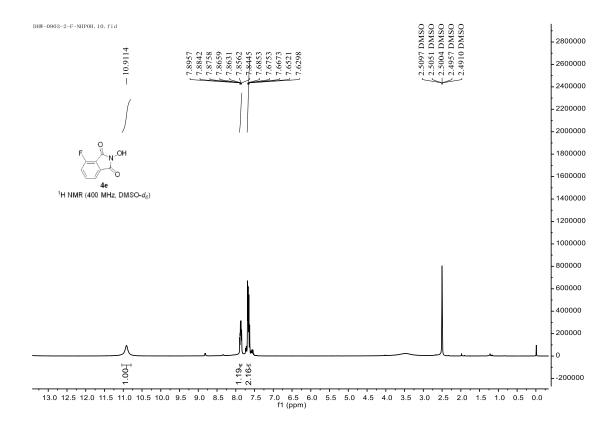


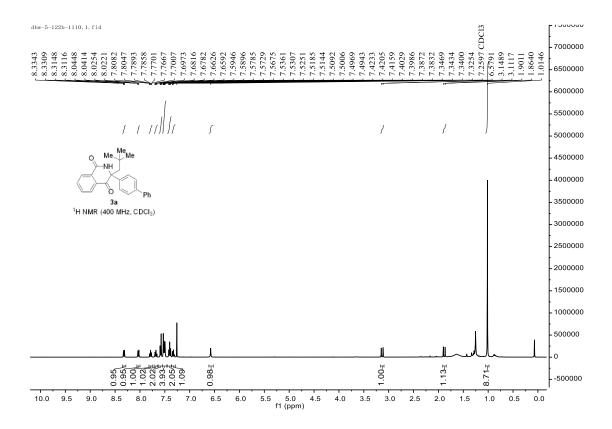


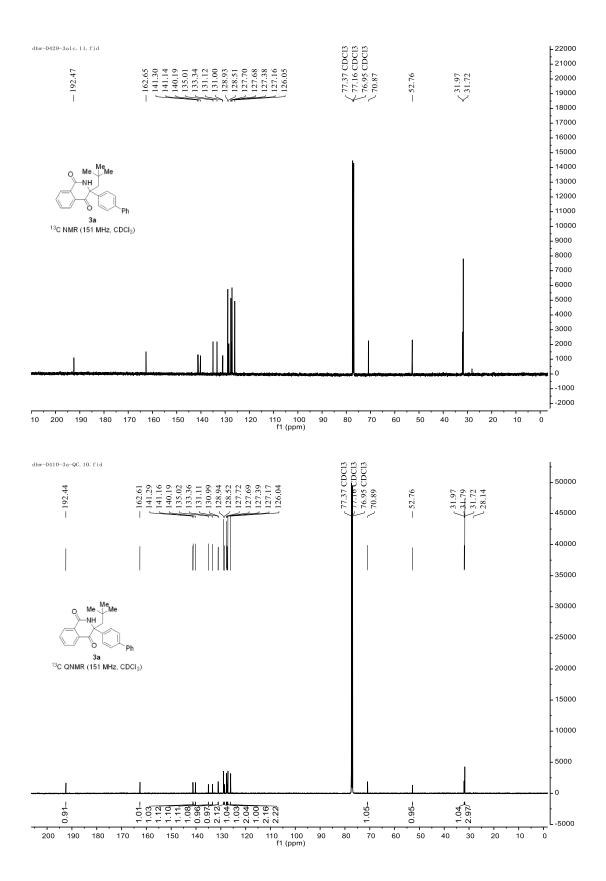


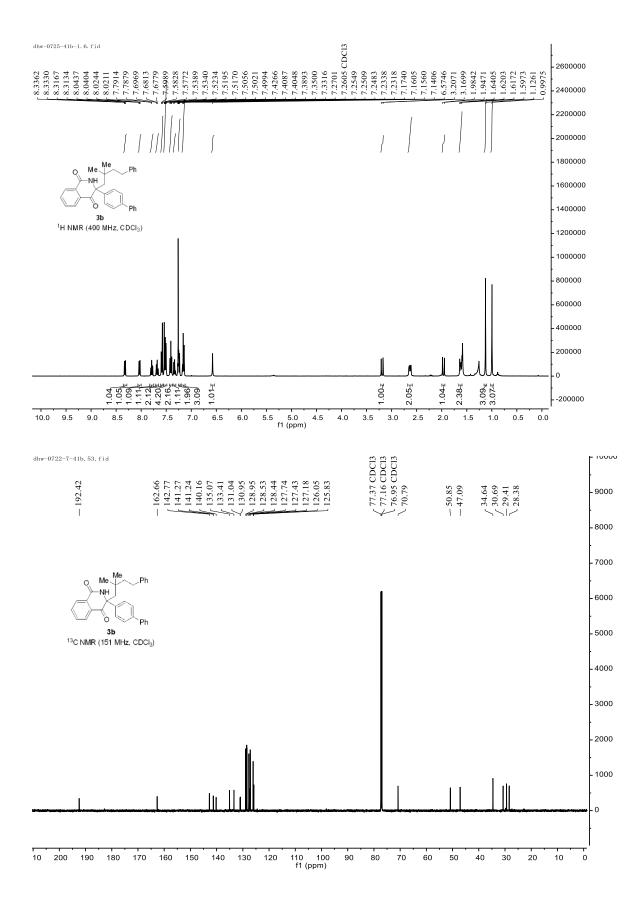


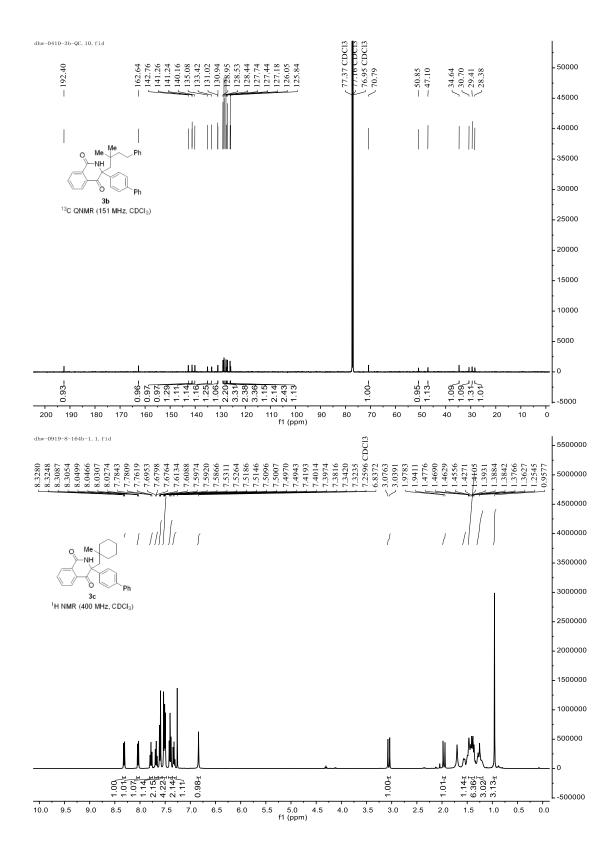


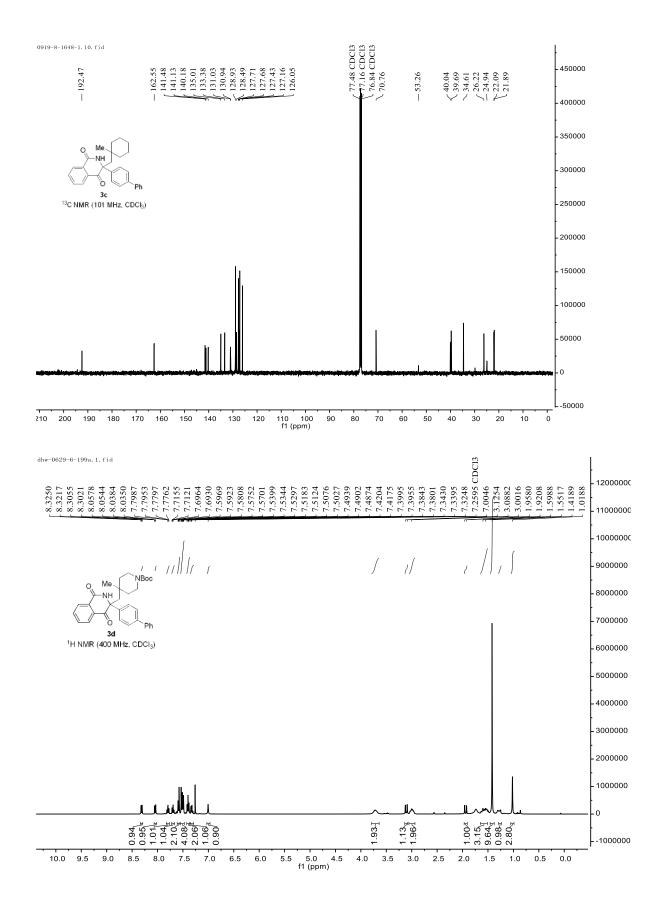


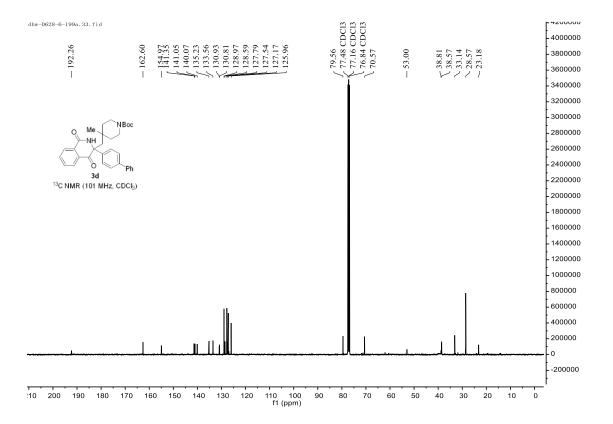


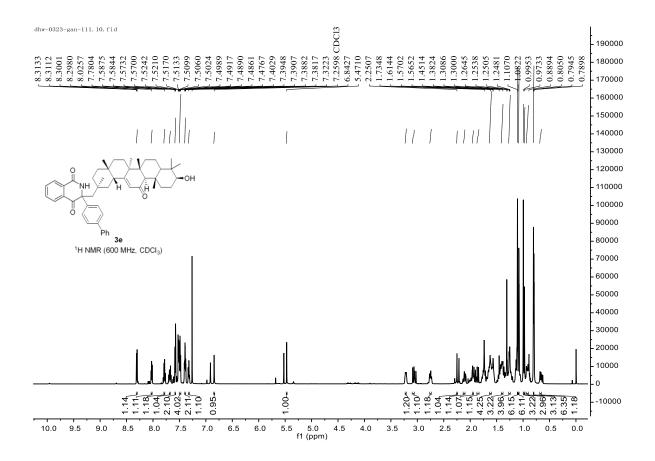


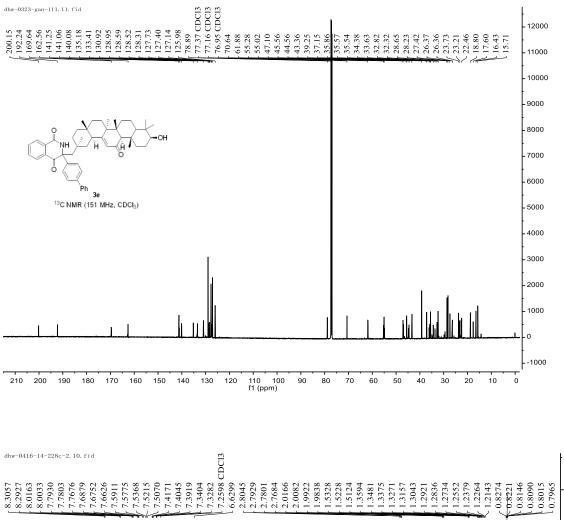


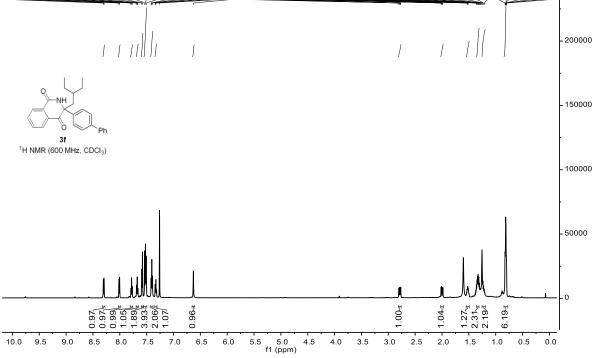


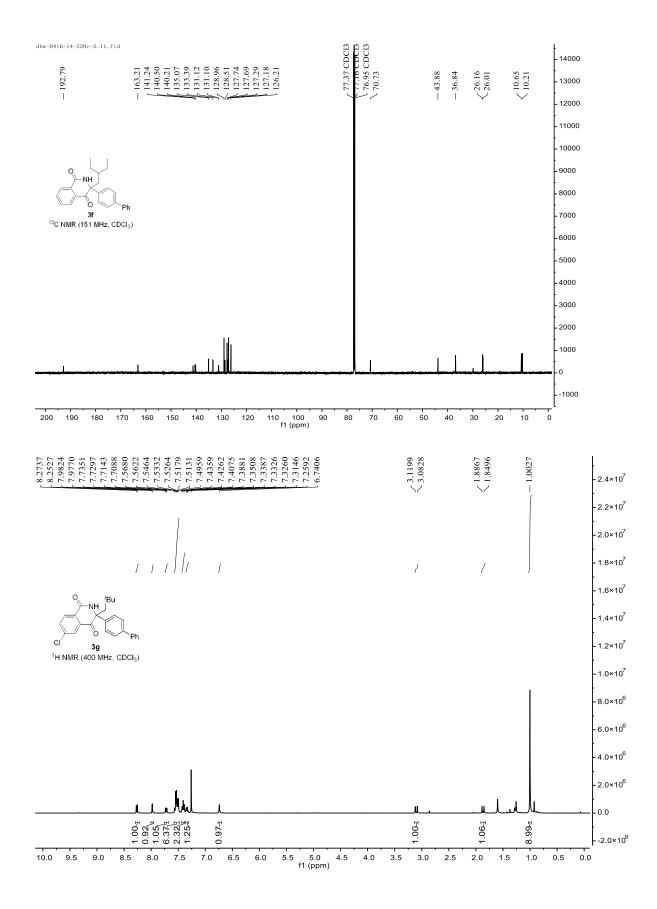


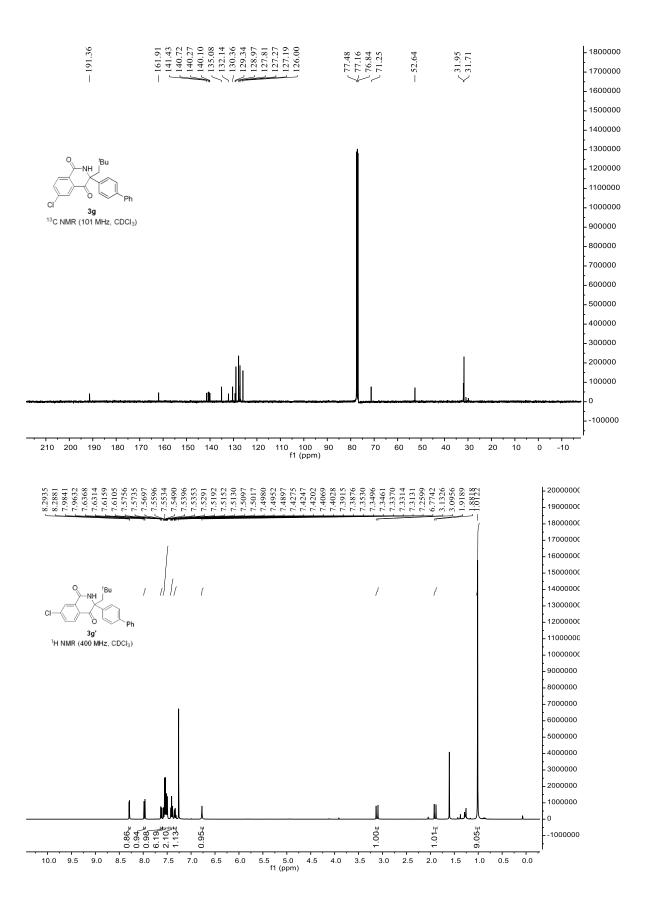


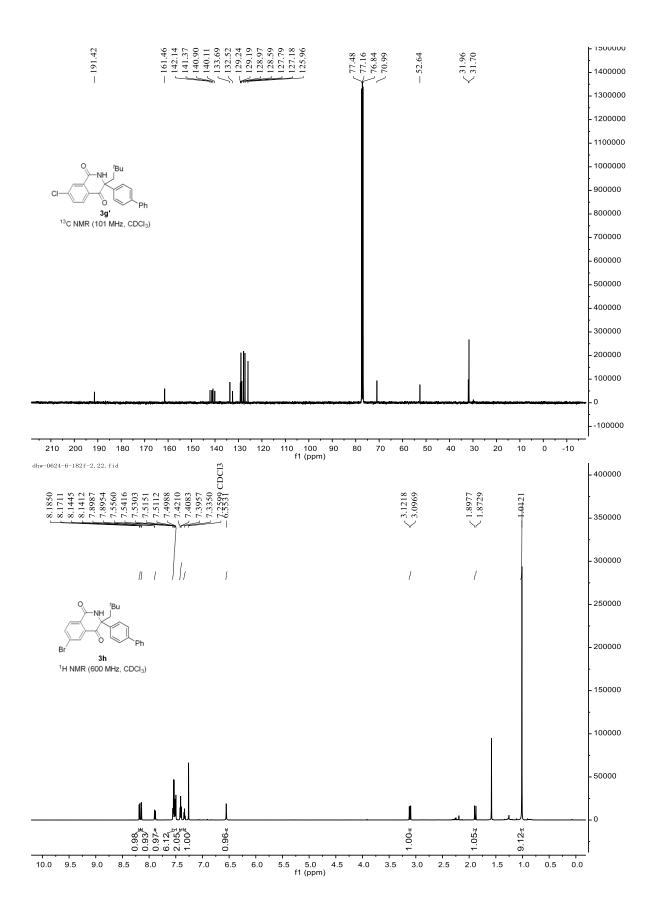


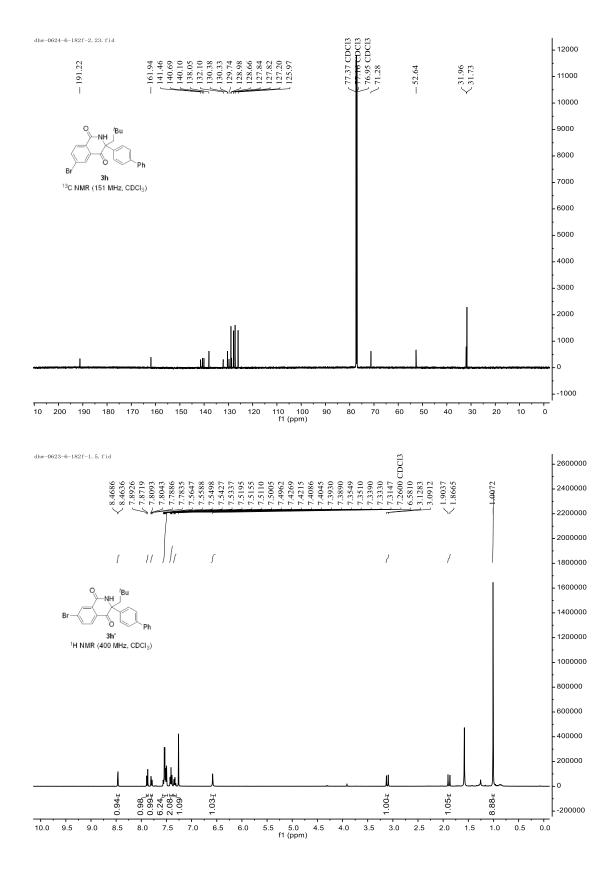


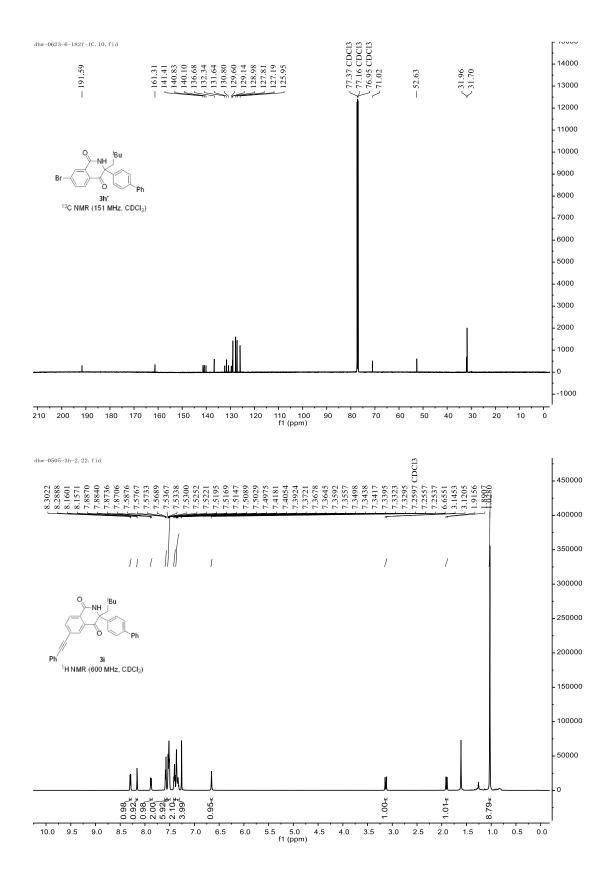


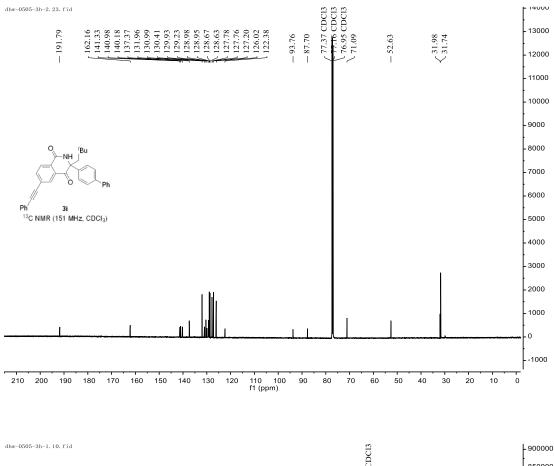


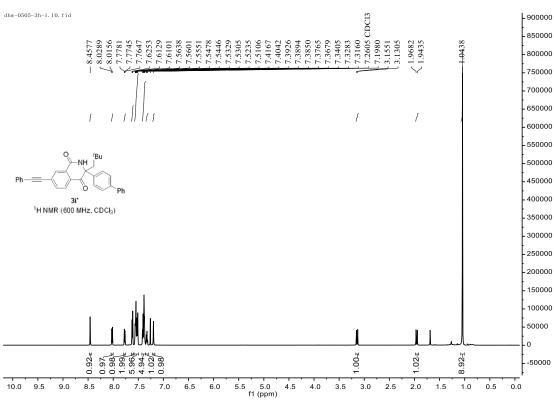


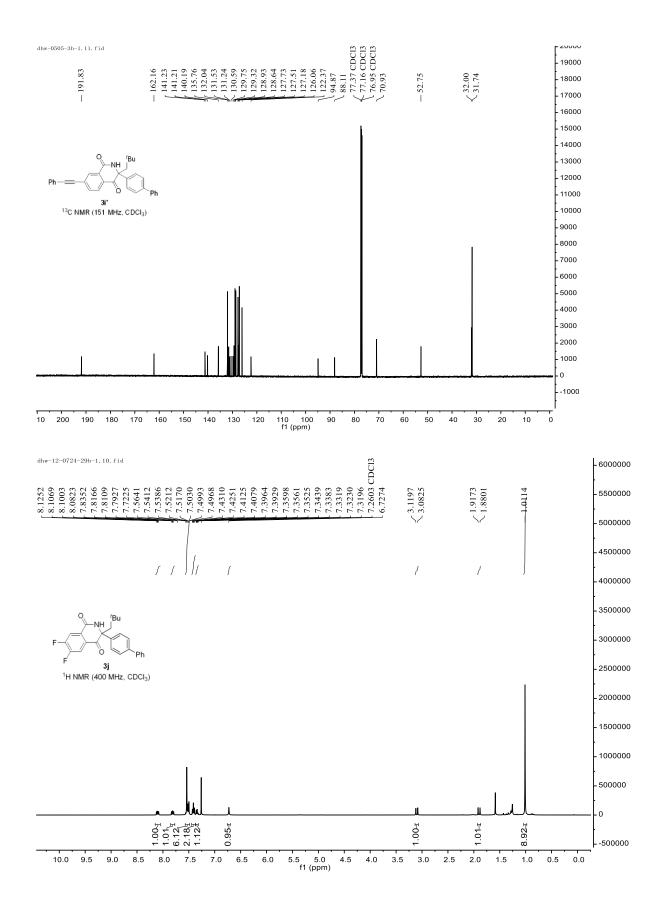


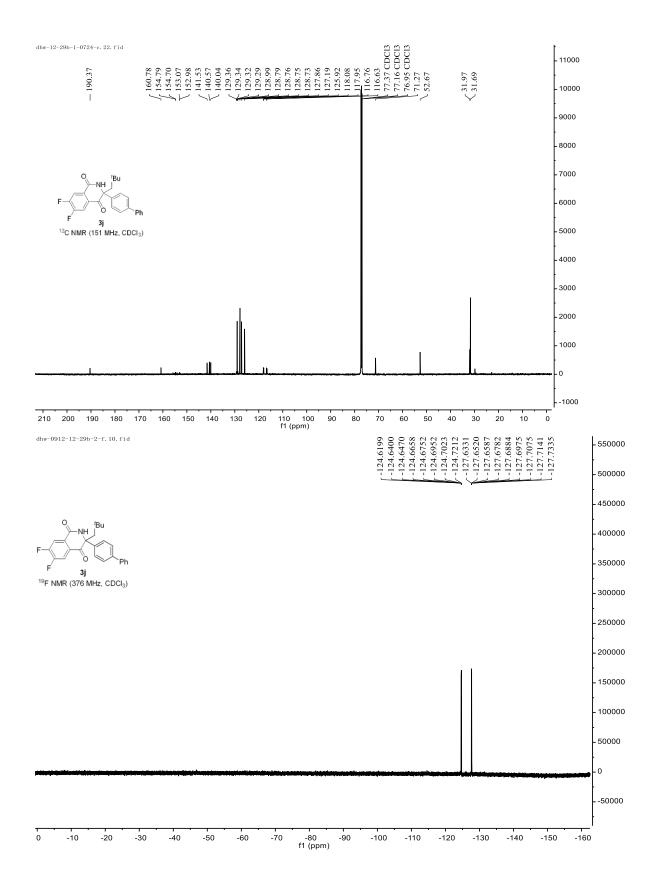

250000

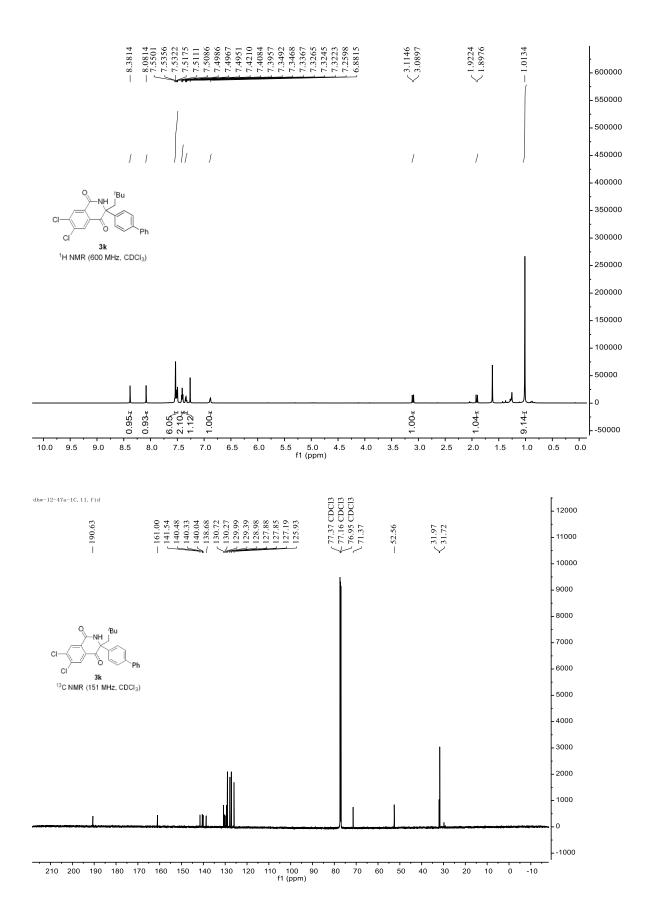


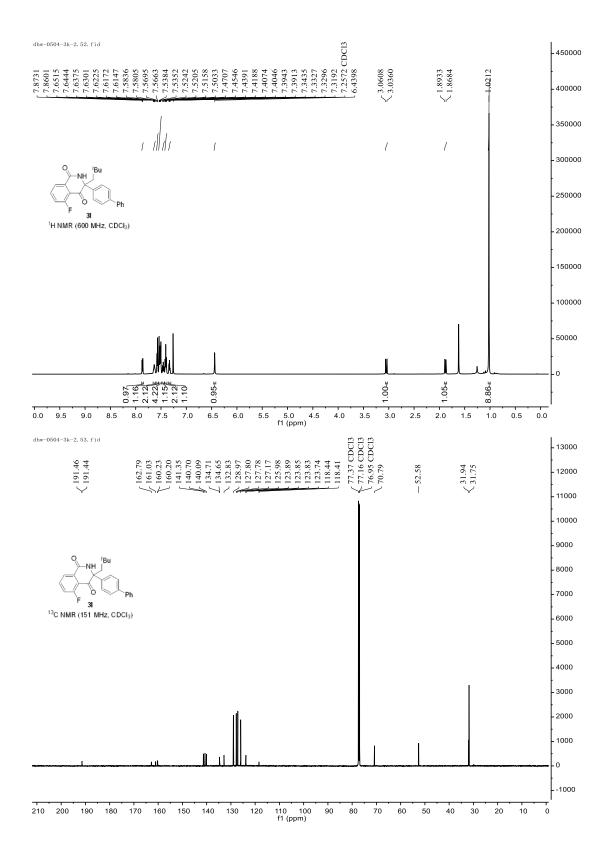


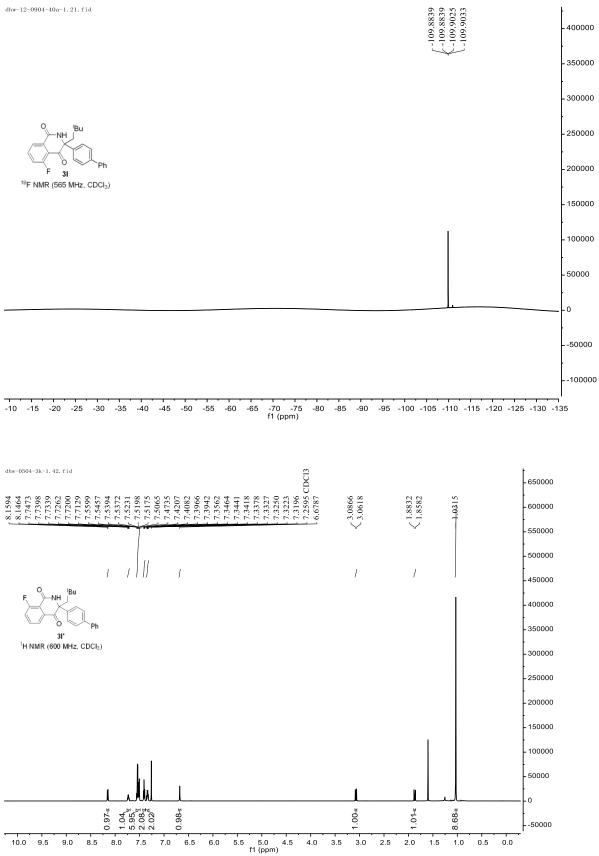


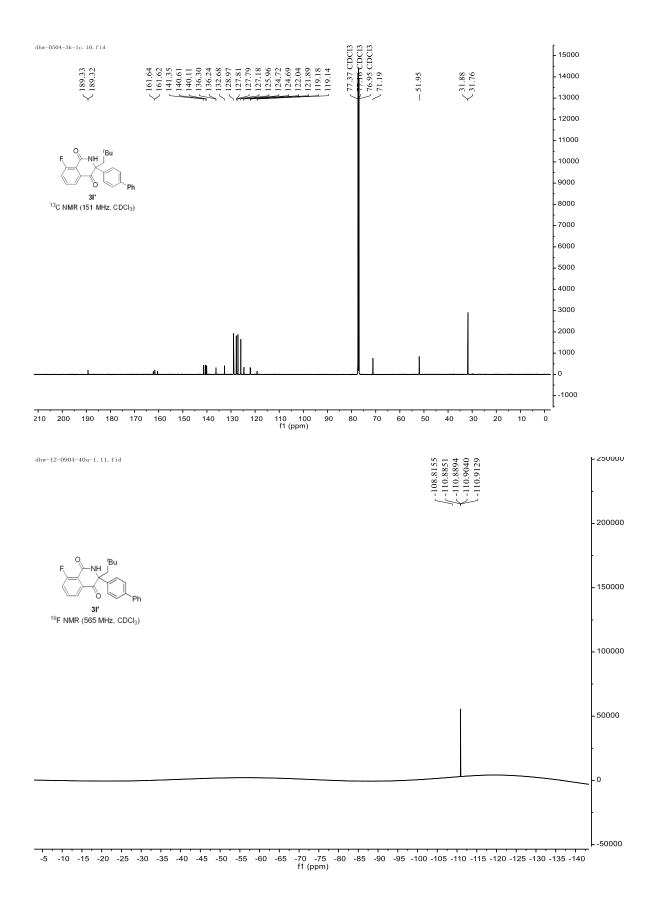


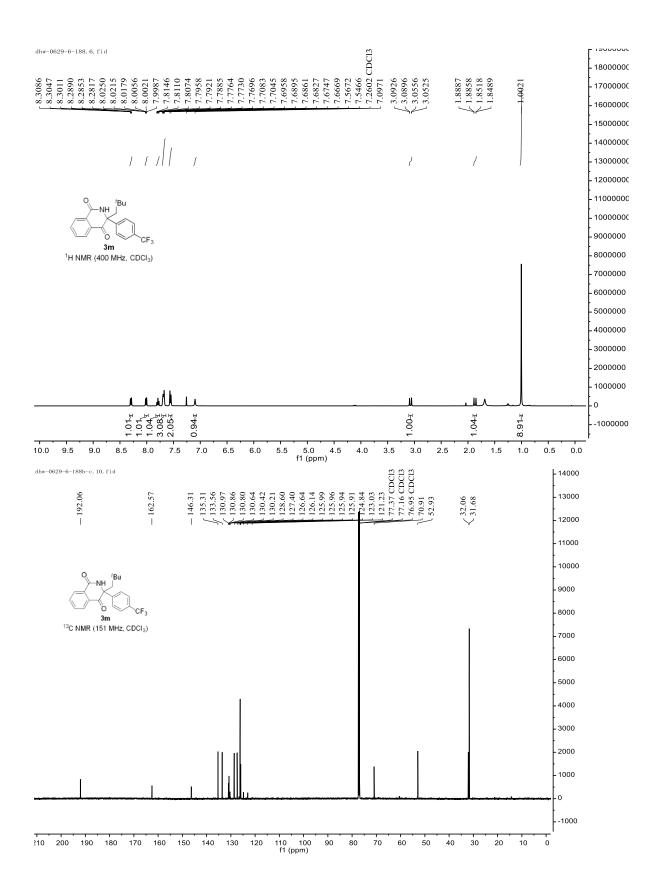


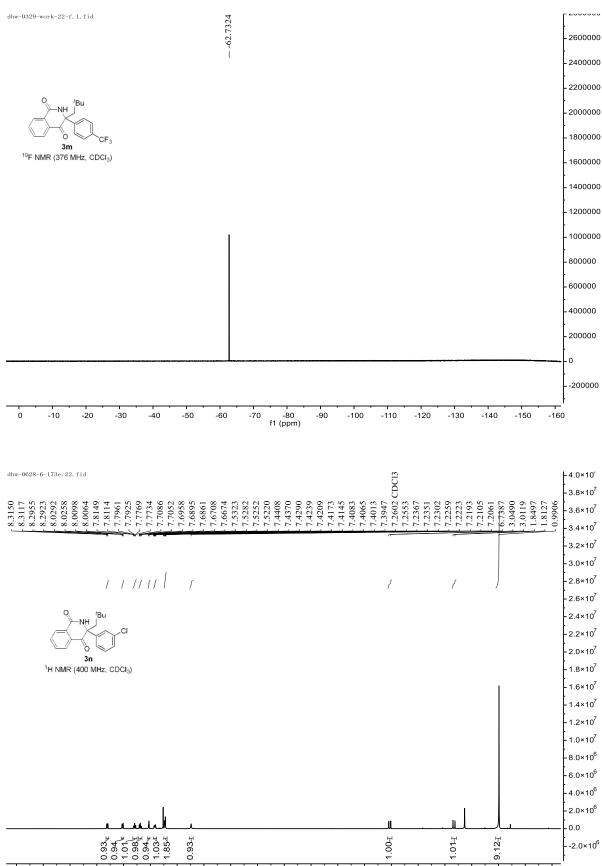


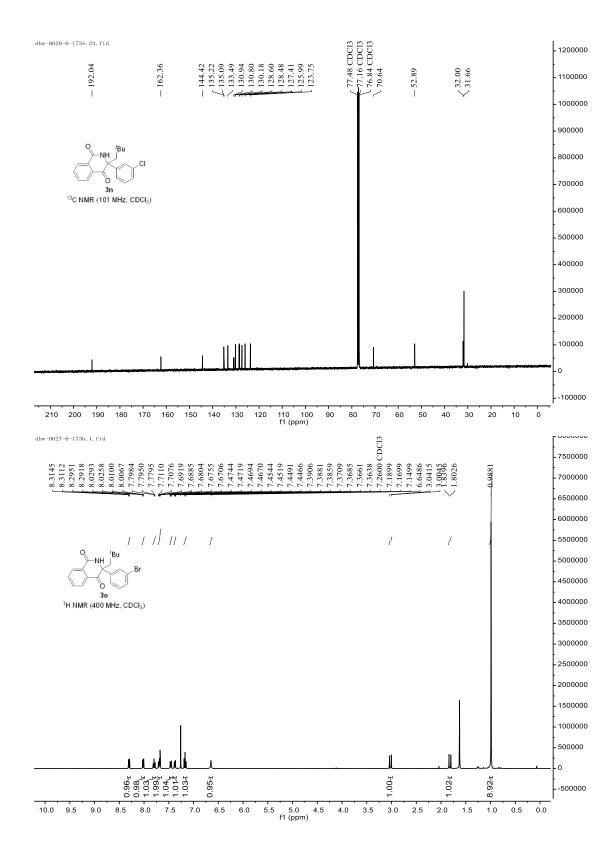


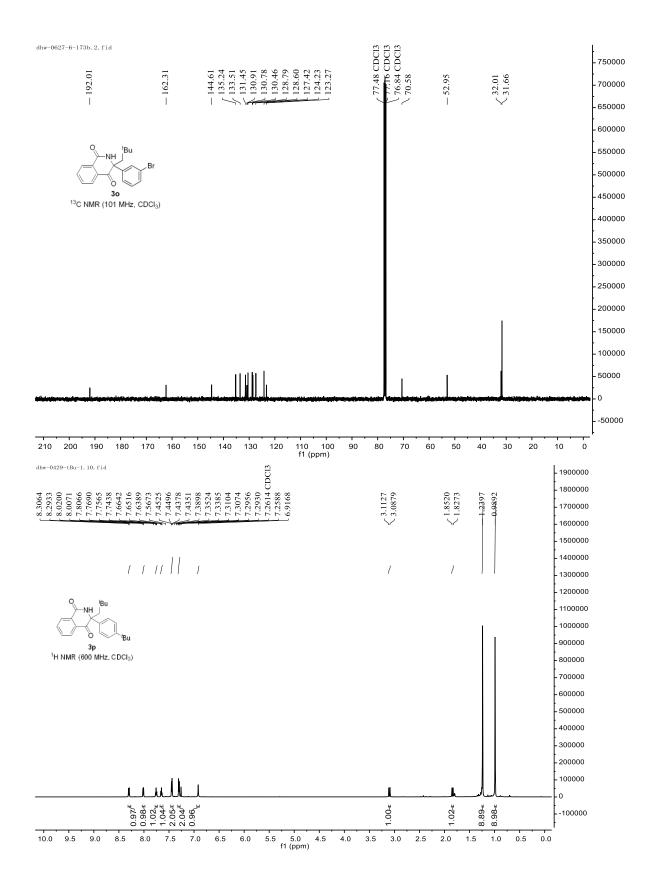


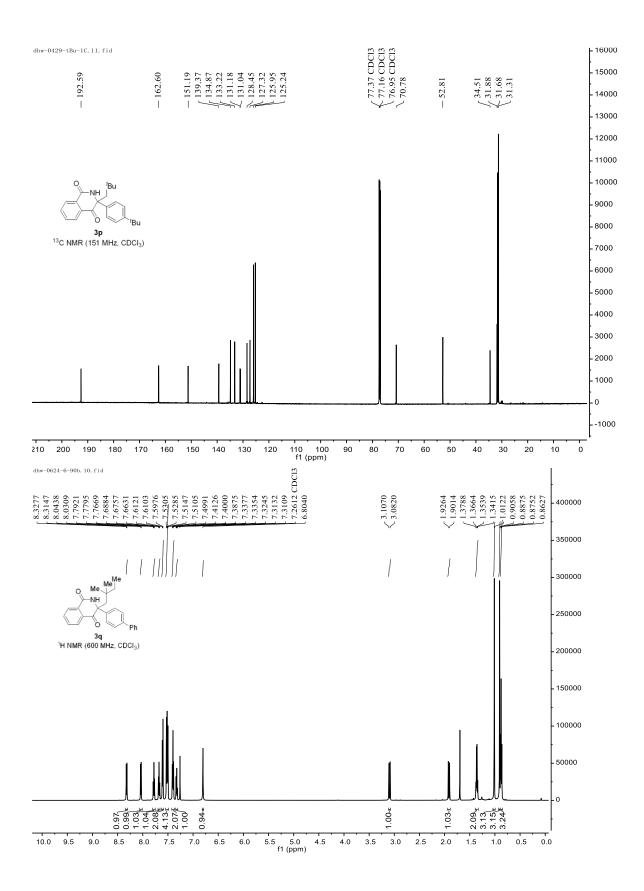


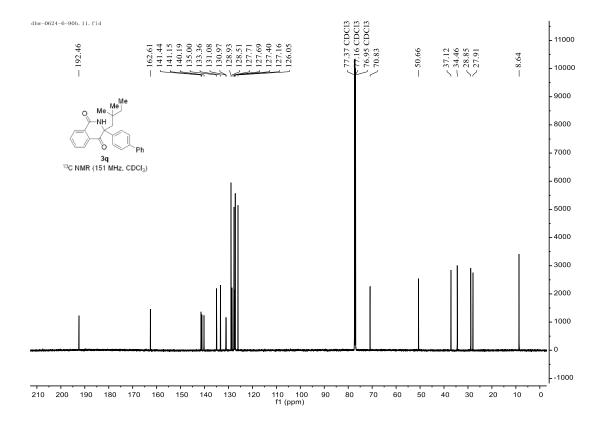


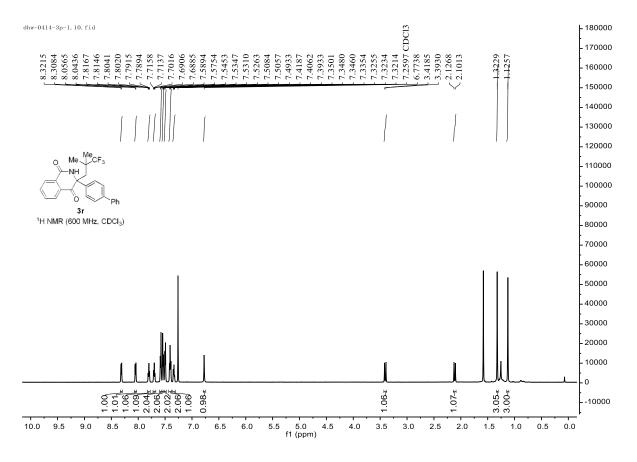











5.5 5.0 4.5 f1 (ppm) 1.0 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0.0

