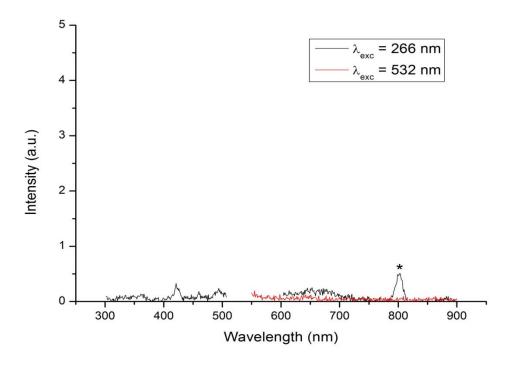
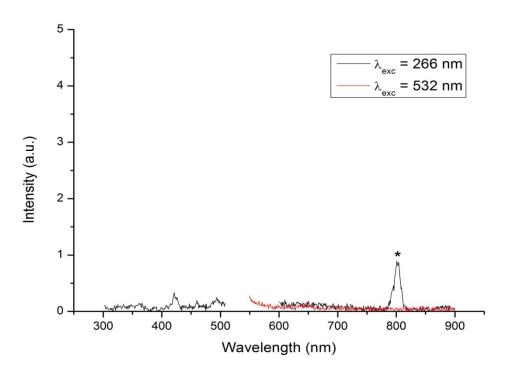

Supplementary information for:

Incandescent Porous Carbon Microspheres to Light up Cells: Solution Phenomena and Cellular Uptake

Paul Duffy^a, Luís M. Magno^b, Rahul Yadav^c, Selene K. Roberts^c, Andrew . Ward^c, Stanley W. Botchway^c, Paula E. Colavita^a* and Susan J. Quinn^b*


^c Central Laser Facility, Research Complex at Harwell, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK



Supplementary Fig. S1. Raman of a single particle optically trapped in water. Raman of LiDCA microspheres suspended in water and trapped for 20 s. No significant changes are observed in this timescale.

^a School of Chemistry ,Trinity College Dublin, Dublin 2, Ireland Fax: 353 1 671 2826; Tel: 353 1 896 3562; Email: colavitp@tcd.

^b School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Fax: 353 1 716 1178; Tel: 353 1 716 2407; E-mail: susan.quinn@ucd.ie

Supplementary Fig. S2. Photoemission of carbon microspheres. Emission of LiDCA (upper) and NaDCA (lower) microspheres suspended in water. (*Band observed due to diffraction of scattered light.)